1. (Jan-00.4): Let $A \in M_n(\mathbb{C})$ and assume that A has rank 1.

(a) What are the possible Jordan canonical forms for A?
(b) For each of the forms in (a), find the characteristic and minimal polynomial of A.

2. (Jan-13.5): Let W_n be the set of $n \times n$ complex matrices C such that the equation $AB - BA = C$ has a solution in $n \times n$ matrices A and B.

(a) Show that W_n is closed under scalar multiplication and conjugation.
(b) Show that the identity matrix is not in W_n.
(c) Give a complete description of W_2.

3. (Jan-11.4): Let V be a finite-dimensional \mathbb{C}-vector space and $T : V \to V$.

(a) Suppose W is a subspace with $T(W) \subseteq W$. Show that the characteristic polynomial $f_S(x)$ of $S = T|_W$ divides the characteristic polynomial $f_T(x)$ of T on V.
(b) Let λ be a root of $f_T(x)$ of multiplicity m and $V_\lambda = \{v \in V : T(v) = \lambda v\}$, Show that $1 \leq \dim_\mathbb{C} V_\lambda \leq m$.
(c) Find (V, T, λ) such that λ has multiplicity 5 as a root of $f_T(x)$ but $\dim_\mathbb{C} V_\lambda = 1$.

4. (Jan-14.2): Let F be a field and n a positive integer. Let $A \in M_{n \times n}(F)$ such that $A^n = 0$ but $A^{n-1} \neq 0$. Show that any $B \in M_{n \times n}(F)$ that commutes with A is contained in the F-linear span of $I, A, A^2, \ldots, A^{n-1}$.

5. (Aug-82.7): Let $A \in M_n(\mathbb{C})$. Show that the following are equivalent:

(a) The ranks of A and A^2 are equal.
(b) The multiplicity of 0 as a root of the minimal polynomial of A is at most 1.
(c) There is an $n \times n$ matrix X such that $AXA = A, XAX = X, AX = XA$.

6. (Aug-06.5): Let $F = \mathbb{F}_q$ and $M_2(F)$ be the ring of 2×2 matrices over F.

(a) If $A \in M_2(F)$ has equal eigenvalues in the algebraic closure of F, show that the eigenvalues of A belong to F.
(b) Determine the number of nonzero nilpotent matrices in $M_2(F)$ as a function of q.

7. (Jan-10.4): Let V be finite-dimensional over F and $T : V \to V$, with characteristic polynomial $f(x) \in F[x]$.

(a) Show that $f(x)$ is irreducible in $F[x]$ iff there are no proper nonzero subspaces W of V with $T(W) \subseteq W$.
(b) If $f(x)$ is irreducible and $\text{char}(F) = 0$, show that T is diagonalizable over \bar{F}.

8. (Jan-05.4): Let F be an algebraically-closed field and $M_n(F)$ be the ring of $n \times n$ matrices over F. Describe those matrices $X \in M_n(F)$ such that all matrices that commute with X are diagonalizable.