1. (Jan-97.4) Let K be a field.
 (a) If $\text{char}(K) \neq 2$, show that $GL_n(K)$ has exactly n conjugacy classes of elements of order 2.
 (b) If $\text{char}(K) = 2$, show that $GL_n(K)$ has exactly $\lceil n/2 \rceil$ conjugacy classes of elements of order 2.

2. (Aug-99.5) Let f be the ideal generated by θ. Find explicitly an element g.
 (b) If $\text{char}(R) = 2$, show that there is a monic polynomial $f(x) \in \mathbb{Z}[x]$ such that $f(M) = 0$.
 (c) Show that Z is nilpotent, show that $\text{tr}(M)$ is an algebraic integer.

3. (Aug-94.5) Let F be a field and $S = M_n(F)$.
 (a) If $s \in S$ is nilpotent, show that $\text{tr}(S) = 0$.
 (b) If R is a ring (not necessarily commutative) and $\theta : R \rightarrow S$ is a surjective ring homomorphism, let I be an ideal of R such that every element of I is the sum of nilpotent elements of R. Show that $\theta(I) = 0$.

4. (Aug-99.5) Let F be a field, $f(x)$ and $g(y)$ be nonconstant polynomials in $R = F[x, y]$, and $I = (f(x), g(y))$, the ideal generated by f and g.
 (a) Show that $I \neq R$.
 (b) If $f(x) = x - \alpha$ and $g(y) = y - \beta$ for $\alpha, \beta \in F$, show that I is a maximal ideal.

5. (Jan-92.5) Let $\alpha_1, \ldots, \alpha_n$ be the roots of the polynomial $f(x) = 2x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$.
 (a) Show that $2\alpha_i$ is an algebraic integer for $1 \leq i \leq n$.
 (b) Show that $\mathbb{Z}[\alpha_1, \ldots, \alpha_n] \cap \mathbb{Q} \subseteq \mathbb{Z}[1/2]$.
 (c) If some a_j with $0 \leq j \leq n - 1$ is odd, show that $1/2 \in \mathbb{Z}[\alpha_1, \ldots, \alpha_n] \cap \mathbb{Q}$, and deduce that the latter intersection is $\mathbb{Z}[1/2]$. What happens if all a_j are even?

6. (Jan-12.5) Let K be a field where -1 is not a square, and let $G = GL_2(K)$.
 (a) If $g \in G$, show that g has order 4 iff $\det(g) = 1$ and $\text{tr}(g) = 0$.
 (b) Find explicitly an element $g \in G$ of order 4.
 (c) Suppose there exist elements $a, b \in K$ with $a^2 + b^2 = -1$. Show that G contains two elements g, h of order 4 such that gh also has order 4.

7. (Jan-96.5) Let q be a prime power and $f(x) = \frac{x^5 - 1}{x - 1} = x^4 + x^3 + x^2 + x + 1 \in \mathbb{F}_q[x]$.
 (a) If f has a root in \mathbb{F}_q, show that f splits completely over \mathbb{F}_q and show that this happens precisely when $q \equiv 0, 1 \mod 5$.
 (b) If $f(x)$ has an irreducible monic factor $g(x)$ of degree 2, show that g has constant term 1.
 (c) Factor $f(x)$ into quadratic factors when $q = 29$.

2014 Algebra SEP ~ Grab Bag problems, by E. Dummit
8. (Jan-04.5) Let \(V \) be a finite-dimensional \(F \)-vector space and \(T : V \to V \). Assume that no nonzero proper subspace of \(V \) is mapped into itself by \(T \).

(a) If \(S \in F[T] \) is nonzero, show that \(\{ v \in V : Sv = 0 \} \) is the zero subspace.
(b) Prove that \(F[T] \) is a field.
(c) Show that \(|F[T] : F| = \dim_F V \).

9. (Jan-11.2) Let \(R \) be a commutative ring with 1, \((a) = aR \), and \(P \) a prime ideal properly contained in \((a) \).

(a) Show that \(P = aP \).
(b) If \(P \) is finitely generated, prove there exists \(b \in R \) with \((1 - ab)P = 0\).
(c) If \(R \) is a domain, conclude that either \(P = 0 \) or \((a) = R \).

10. (Jan-07.5) Let \(A \) be an additive abelian group and \(B \) a subgroup. We say \(B \) is essential in \(A \) \((B \text{ ess } A) \) if \(B \cap X \neq 0 \) for every nontrivial subgroup of \(A \).

(a) If \(B_1 \text{ ess } A_1 \) and \(B_2 \text{ ess } A_2 \) show that \((B_1 \oplus B_2) \text{ ess } (A_1 \oplus A_2) \).
(b) If \(B \text{ ess } A \) and \(B \) has no nonzero elements of finite order, show \(A \) has no nonzero elements of finite order.
(c) If \(Q \text{ ess } A \) for some abelian group \(A \), show that \(A = Q \).

11. (Jan-08.4) Let \(V \) be a finite-dimensional vector space over \(F \) of characteristic \(p \), \(T : V \to V \), and \(W = \{ v \in V : Tv = v \} \). Further suppose \(T^p = I \) and \(\dim_F W = 1 \).

(a) Show that \((T - I)^p = 0 \) and that \(\dim_F V \leq p \).
(b) If \(\dim_F V < p \) show that \((T - I)^{p-1} = 0 \).
(c) If there exists \(v \in V \) with \(v + Tv + T^2v + \cdots + T^{p-1}v \neq 0 \), show \(\dim_F V = p \).

12. (Aug-11.2) Let \(R \) be a commutative ring with 1 and \(Q \) a primary ideal of \(R \). For any \(a \in R \setminus Q \), define the ideal \(I_a = \{ r \in R : ar \in Q \} \).

(a) Show that \(\rad(I_a) = \rad(Q) \).
(b) Show that \(I_a \) is a primary ideal of \(R \).
(c) If \(R \) is Noetherian, show that there exists an \(a \) such that that \(I_a \) is a prime ideal.

13. (Aug-07.2) Let \(R \) be a commutative integral domain that is integrally closed in its field of fractions \(F \).

(a) Suppose \(K \) is a field containing \(F \) and \(\alpha \in K \) is integral over \(R \). Show that the minimal monic polynomial of \(\alpha \) over \(F \) is in \(R[x] \).
(b) Let \(f(x) \in R[x] \) be monic. Show that \(f(x) \) is irreducible in \(R[x] \) iff it is irreducible in \(F[x] \).

14. (Jan-04.5) Let \(R \) be a ring with 1 and \(V = X \oplus Y \) for nonzero (right) \(R \)-modules \(X \) and \(Y \).

(a) Show that 0, \(X, Y, V \) are the only submodules of \(V \) iff \(X \) and \(Y \) are nonisomorphic simple \(R \)-modules.
(b) If \(X \) and \(Y \) are nonisomorphic simple \(R \)-modules, show that \(\End_R(V) \) is isomorphic to the direct sum of two division rings.