1. (Jan-06.2) Let R be the subring of $\mathbb{Z}[x]$ consisting of all polynomials with zero x- and x^2-coefficients.

(a) Show that $\mathbb{Q}(x)$ is the field of fractions of R.
(b) Find the integral closure of R in $\mathbb{Q}(x)$.
(c) Does there exist a polynomial $g(x) \in R$ such that R is generated as a ring by 1 and $g(x)$?

2. (Aug-09.2/Jan-08.2a) Let $R \subseteq S$ be commutative rings with the same 1, and assume that every element of S is integral over R.

(a) If $r \in R$ has an inverse in S, prove this inverse is in R.
(b) Suppose R is a field and $s \in S$ is regular (i.e., if $sx = 0$ for some $x \in S$, then $x = 0$). Show that s is invertible in S.
(c) If P is a prime ideal of S, prove that P is maximal in S iff $R \cap P$ is maximal in R.

3. (Jan-01.3): Let $f(x) \in \mathbb{Z}[x]$ be monic and such that $f(\alpha) = f(2\alpha) = 0$ for some $\alpha \in \mathbb{C}$.

(a) Show that $f(0) \neq 1$.
(b) If f is irreducible, prove $\alpha = 0$.

4. (Aug-12.5) Let R be a not necessarily commutative ring with 1, such that $x^5 = x$ for every $x \in R$.

(a) Show that $J(R) = 0$.
(b) Now assume R is right-Artinian. Prove that R is a direct sum of division rings.
(c) Let D be a division ring direct summand of R. If F is any subfield of D, show that $F = \mathbb{F}_2$, \mathbb{F}_3, or \mathbb{F}_5.
(d) Deduce that D above is isomorphic to \mathbb{F}_2, \mathbb{F}_3, or \mathbb{F}_5, and conclude that R is commutative.

5. (Aug-04.2) Let R be a ring with 1, M be a finitely-generated (right) R-module, and $N \subset M$ a proper submodule of M.

(a) Prove that there exists a maximal submodule of M containing N.
(b) Show that $N + MJ$ is a proper submodule of M, where $J = J(R)$ is the Jacobson radical of R.

6. (Aug-06.2) Let R be a ring with 1 and N a nil ideal of R such that R/N has no zero divisors.

(a) Show that the only idempotents of R are 0 and 1.
(b) If R/N is a division ring, show that every zero divisor in R is nilpotent.
7. (Jan-14.1): Let R be a commutative ring and I an ideal of R.

(a) Show that the radical of I, $\text{rad}(I)$, is an ideal of R. (Recall that the radical is given by the set of all elements $x \in R$ such that there exists an integer n such that $x^n \in I$.)

(b) Give an example of an ideal I in $\mathbb{Q}[x,y]$ such that I is non-principal but $\text{rad}(I)$ is principal.

(c) Suppose we try to define $\text{rad}(0)$ in $R = M_{2 \times 2}(\mathbb{R})$ to be the set of all elements $r \in R$ such that there exists an integer n with $r^n = 0$. Show that this set $\text{rad}(0)$ is not an ideal of R.

8. (Aug-08.2) Let $S = \mathbb{Z} \oplus \mathbb{Z}$, and $R = \{(a, b) \in S : a \equiv b \text{ mod } 6\}$.

(a) Show that R is a finitely-generated \mathbb{Z}-module and conclude that R is a Noetherian ring.

(b) Prove that the ideal $P = \{(a, 0) \in R : a \equiv 0 \text{ mod } 6\}$ is prime in R.

(c) If Q is a primary ideal of R with $P = \text{rad}(Q)$, show that $Q = P$.

9. (Jan-12.2) Let R be a commutative ring with 1 and Q be a primary ideal of R. Suppose that $Q = \bigcap X_i$ is a finite intersection of the ideals X_i.

(a) If each X_i is prime, prove that $Q = X_j$ for some j. [Hint: Show that Q is prime.]

(b) If R is Noetherian and each X_i is primary, and the radicals of the X_i are distinct, prove again that $Q = X_j$ for some j.

10. (Aug-02.2) Let R be a commutative ring with 1 in which every proper ideal is primary.

(a) If P is a prime ideal and I is any ideal, show that either $I \subseteq P$ or $P = IP \subseteq I$.

(b) If M is a maximal ideal of R, show that M is the set of nonunits of R.

(c) Show that J is prime in R iff for all $r \in R$, $r^2 \in J$ implies $r \in J$.