1. (Jan-06.2) Let \(R \) be the subring of \(\mathbb{Z}[x] \) consisting of all polynomials with zero \(x \)- and \(x^2 \)-coefficients.

 (a) Show that \(\mathbb{Q}(x) \) is the field of fractions of \(R \).

 (b) Find the integral closure of \(R \) in \(\mathbb{Q}(x) \).

 (c) Does there exist a polynomial \(g(x) \in R \) such that \(R \) is generated as a ring by 1 and \(g(x) \)?

Solution:

\(a) \) Clearly \(\mathbb{Q}(x) \), the field of fractions of \(\mathbb{Z}[x] \), contains the field of fractions of \(R \). Conversely, \(x \) and 1 are in the field of fractions of \(R \), because \(x = \frac{x^2}{x^3} \), so the field of fractions of \(R \) contains the field of fractions of \(\mathbb{Z}[x] \).

\(b) \) The integral closure is \(\mathbb{Z}[x] \) – this ring is integrally closed since it is a UFD, so we need only show that the integral closure of \(R \) contains \(\mathbb{Z}[x] \). But \(x \) is in the integral closure, since it is a root of \(p(t) \) where \(p(t) = t^3 - x^3 \in R[t] \), hence by integrality properties, \(\mathbb{Z}[x] \) is contained in the integral closure.

\(c) \) No: if there were such a polynomial, then \(x^3 \) and \(x \) would necessarily be polynomials in \(g(x) \), hence \(\deg(g) \) divides 3 and 4, hence would have to be 1, but no polynomial of degree 1 is in \(R \).

\(c-alt) \) No: if there were, then \(R \) would be isomorphic to \(\mathbb{Z}[g(x)] \cong \mathbb{Z}[y] \), but the latter is integrally closed while \(R \) is not.

2. (Aug-09.2/Jan-08.2a) Let \(R \subseteq S \) be commutative rings with the same 1, and assume that every element of \(S \) is integral over \(R \).

 (a) If \(r \in R \) has an inverse in \(S \), prove this inverse is in \(R \).

 (b) Suppose \(R \) is a field and \(s \in S \) is regular (i.e., if \(sx = 0 \) for some \(x \in S \), then \(x = 0 \)). Show that \(s \) is invertible in \(S \).

 (c) If \(P \) is a prime ideal of \(S \), prove that \(P \) is maximal in \(S \) iff \(R \cap P \) is maximal in \(R \).

Solution:

\(a) \) Since \(u = r^{-1} \) is integral over \(R \), it satisfies a monic polynomial with coefficients in \(R \): \(u^n + a_{n-1}u^{n-1} + \cdots + a_1u + a_0 = 0 \). Now multiply by \(r^{n-1} \) to obtain \(u + a_{n-1}r + a_{n-2}r^2 + \cdots + a_0r^{n-1} \), whence \(u = -a_{n-1} - a_{n-2}r - \cdots - a_0r^{n-1} \in R \).

\(b) \) By hypothesis \(s \) is integral over \(R \), so again we can write \(s^n + b_{n-1}s^{n-1} + \cdots + b_0 = 0 \) for some monic polynomial of minimal degree. If \(b_0 = 0 \) then we would have \(s(s^{n-1} + \cdots + b_1) = 0 \) so by regularity we would have \(s^{n-1} + \cdots + b_1 = 0 \), contradicting minimality. Hence \(b_0 \neq 0 \); then we may write \(s(s^{n-1} + \cdots + b_1) = -b_0 \), so since \(R \) is a field we can divide by \(-b_0 \) to see \(s \cdot \left[-\frac{s^{n-1} + \cdots + b_1}{b_0} \right] = 1 \), so \(s \) is invertible.

\(c) \) By passing to the quotient, we know that every element of \(S/P \) is integral over \(R/(R \cap P) \).

\(\Rightarrow \): If \(P \) is maximal in \(S \), let \(\bar{r} \in R/(R \cap P) \) be nonzero. Then \(\bar{r} \) is invertible in \(S/P \) since \(S/P \) is a field and \(r \notin P \). So by part (a), \(\bar{r} \) is invertible in \(R/(R \cap P) \), hence the latter is a field and \(R \cap P \) is maximal in \(R \).

\(\Leftarrow \): If \(R \cap P \) is maximal in \(R \), then \(R/(R \cap P) \) is a field and \(R/P \) is a domain since \(P \) is prime. Hence every nonzero element of \(R/P \) is regular, so by part (b) \(R/P \) is a field and \(P \) is maximal.
3. (Jan-01.3) Let \(f(x) \in \mathbb{Z}[x] \) be monic and such that \(f(\alpha) = f(2\alpha) = 0 \) for some \(\alpha \in \mathbb{C} \).

(a) Show that \(f(0) \neq 1 \).

(b) If \(f \) is irreducible, prove \(\alpha = 0 \).

Solution:

a) Since \(f \) is monic, all its roots \(r_1, \ldots, r_n \) are algebraic integers, with \(r_1 = \alpha \) and \(r_2 = 2\alpha \). Then \(\frac{1}{2} f(0) = \frac{1}{2} (-1)^n r_1 r_2 \cdots r_n = (-1)^n \alpha^2 r_3 \cdots r_n \) is a product of algebraic integers hence also an algebraic integer. Since it is also a rational number, it is an integer. We conclude that \(f(0) \) is an even integer, so it is not 1.

b) Consider \(\gcd(f(x), f(2x)) \); it has positive degree since \(x - \alpha \) divides both terms, hence since \(f \) is irreducible it must equal \(f(x) \). Since \(f(x) \) and \(f(2x) \) have the same degree, the latter is a scalar multiple of the former. We conclude that if \(\beta \) is a root of \(f \), then so is \(2\beta \), meaning that \(\alpha, 2\alpha, 4\alpha, \ldots \) are all roots of \(f \). Since \(f \) has finite degree, it must be the case that \(\alpha = 0 \).

Remark Part (b) is showing that multiplication by 2 is an element of the Galois group of \(f \). Examples of such irreducible \(f \) exist in any positive odd characteristic: for example, over \(\mathbb{F}_3 \), the irreducible polynomial \(p(x) = x^2 + 1 \) has roots 1 and \(2i = -i \), where \(i^2 = -1 \) in \(\mathbb{F}_3 \).

4. (Aug-12.5) Let \(R \) be a not necessarily commutative ring with 1, such that \(x^5 = x \) for every \(x \in R \).

(a) Show that \(J(R) = 0 \).

(b) Now assume \(R \) is right-Artinian. Prove that \(R \) is a direct sum of division rings.

(c) Let \(D \) be a division ring direct summand of \(R \). If \(F \) is any subfield of \(D \), show that \(F = \mathbb{F}_2, \mathbb{F}_3, \) or \(\mathbb{F}_5 \).

(d) Deduce that \(D \) above is isomorphic to \(\mathbb{F}_2, \mathbb{F}_3, \) or \(\mathbb{F}_5 \), and conclude that \(R \) is commutative.

Solution:

a) If \(y \in J \), then \(1 - syr \) is a unit for any \(s, r \in R \), so in particular \(1 - y^4 \) is a unit. Since \(0 = y - y^5 = y(1 - y^4) \), multiplying by the inverse of \(1 - y^4 \) yields \(y = 0 \).

b) A right-Artinian ring has a finite number of maximal right ideals \(m_1, \ldots, m_k \), as otherwise \(m_1, m_1 \cap m_2, \ldots \) would yield an infinite increasing chain of right ideals. Now since the Jacobson radical is the intersection of the maximal right ideals of \(R \), part (a) implies that \(\bigcap m_k = 0 \). Now by the Chinese Remainder Theorem, we see that \(R \cong \bigoplus \langle R/m_k \rangle \), since by maximality it must be the case that \(m_i + m_j = R \) for any \((i, j) \), and so \(\bigcap m_j = \bigcap m_j = 0 \). Finally, \(R/m_k \) is a division ring.

b-alt) By the Artin-Wedderburn theorem, we see that \(R \) is a direct sum of matrix rings over division rings: \(R \cong \bigoplus M_k(k \langle D_i \rangle) \). But the Jacobson radical is only zero if all of the matrix rings are 1-dimensional since (for example) there are nilpotent elements in a \(k \times k \) matrix ring if \(k > 1 \).

c) Suppose \(F \) is a field in which \(x^5 - x = 0 \) for all \(x \in F \). By unique factorization we see that \(|F| \leq 5 \), and so \(|F| \) can only be 2, 3, 4, or 5. It is then trivial to see that \(|F| = 2, 3, 5 \) work, but \(|F| = 4 \) does not work.

d) Let \(F \) be the subfield generated by 1 in \(D \). If \(z \in D \) is any element of \(D \), then \(F(z) \) is commutative hence also a subfield of \(D \), but by part (c) it must be the case that \(F(z) = F \), so \(z \in F \) hence \(D = F \). Thus, \(R \) is a direct sum of fields hence commutative.

Remark This is a special case of a theorem, due to Jacobson, that if \(R \) is such that \(x^n(x) = x \) for every \(x \in R \) (where the exponent can depend on \(x \)), then \(R \) is commutative.
5. (Aug-04.2) Let R be a ring with 1, M be a finitely-generated (right) R-module, and $N \subset M$ a proper submodule of M.

(a) Prove that there exists a maximal submodule of M containing N.
(b) Show that $N + MJ$ is a proper submodule of M, where $J = J(R)$ is the Jacobson radical of R.

Solution:

a) This is the module version of Krull’s lemma (that a commutative ring with 1 contains a maximal ideal). Let Σ be the set of proper submodules of M containing N, partially ordered by inclusion; it is nonempty since it contains N. If $C : M_1 \subset M_2 \subset \cdots$ is a chain, we claim $M' = \bigcup M_i$ is an upper bound and a proper submodule of M. It is clearly an upper bound, and it is proper since otherwise it would necessarily contain each of the generators of M at some finite stage, but then one of the M_i would necessarily equal M, contradiction. Hence Zorn’s lemma gives a maximal element, as desired.

b) This is Nakayama’s lemma. Without loss of generality we can replace N with the maximal submodule K from part (a); then the result is equivalent to showing that $K + MJ$ is proper, which is in turn equivalent to showing that MJ is contained in K—i.e., that MJ is contained in every maximal submodule of M. This last statement is equivalent to the more usual statement of Nakayama’s lemma, which says that if M is finitely-generated and $M/MJ = 0$ then $M = 0$: to prove it, suppose that n is the smallest possible number of generators m_1, \ldots, m_n of M and write $m_n = r_1m_1 + \cdots + r_nm_n$ with the $r_j \in J$; then $m_n(1 - r_n) = r_1m_1 + \cdots + r_{n-1}m_{n-1}$, but now since $r_n \in J$ we know that $1 - r_n$ is a unit (else $1 - r_n$ would be contained in some maximal ideal of R hence in J, but then $r_n + (1 - r_n) = 1$ would be in J, contradiction) hence m_n is in the span of m_1, \ldots, m_{n-1}. This is a contradiction since then m_1, \ldots, m_{n-1} would generate M.

6. (Aug-06.2) Let R be a ring with 1 and N a nil ideal of R such that R/N has no zero divisors.

(a) Show that the only idempotents of R are 0 and 1.
(b) If R/N is a division ring, show that every zero divisor in R is nilpotent.

Solution:

a) Suppose $e^2 = e$ in R so that $e(1 - e) = 0$. Passing to R/N shows that $\bar{e} \cdot (1 - \bar{e}) = 0$ in R/N, so since R/N has no zero divisors we see that e or $1 - e$ is in N. But then since N is a nil ideal, $e^n = 0$ or $(1 - e)^n = 0$ for some n, and since $e^2 = e$ and $(1 - e)^2 = (1 - e)$ a trivial induction shows $e = 0$ or $1 - e = 0$, hence $e = 0$ or $e = 1$.

b) Suppose $x \in R$ has $\bar{x} \neq 0$ in R/N (which is to say, $x \notin N$). Then since R/N is a division ring, \bar{x} has a left inverse \bar{y}, so there exists y with $xy = 1 + n$ for some $n \in N$. But then $xy(1 - n + n^2 + \cdots + (-n)^k) = 1$ where $n^k = 0$, so x has a left inverse. Symmetrically, we see x has a right inverse, so it is a unit. Hence every nonunit is contained in N, so in particular every zero divisor is nilpotent.
7. (Jan-14.1): Let R be a commutative ring and I an ideal of R.

(a) Show that the radical of I, $\text{rad}(I)$, is an ideal of R. (Recall that the radical is given by the set of all elements $x \in R$ such that there exists an integer n such that $x^n \in I$.)

(b) Give an example of an ideal I in $\mathbb{Q}[x, y]$ such that I is non-principal but $\text{rad}(I)$ is principal.

(c) Suppose we try to define $\text{rad}(0)$ in $R = M_{2 \times 2}(\mathbb{R})$ to be the set of all elements $r \in R$ such that there exists an integer n with $r^n = 0$. Show that this set $\text{rad}(0)$ is not an ideal of R.

Solution:

a) Suppose $r \in R$ and $x, y \in \text{rad}(I)$, so that $x^n \in I$ and $y^m \in I$. Then $(rx)^n = r^n x^n \in I$, and $(x+y)^{m+n} \in I$, since after expanding with the binomial theorem we see that each term has an x^m or y^m (and these are in I). Also, $0 \in \text{rad}(I)$, so we see $\text{rad}(I)$ is nonempty and closed under addition and R-multiplication.

b) One example is $I = (x^2, xy)$: it is nonprincipal because any generator would necessarily divide both x^2 and xy hence divide their gcd x, but I contains no polynomials of degree less than 2. But then $\text{rad}(I) = (x)$: clearly $\text{rad}(I)$ contains x since $x^2 \in I$, and since $I \subset (x)$ we see $\text{rad}(I) \subseteq \text{rad}(x)$, but since (x) is prime, it equals its radical.

c) This set is not closed under addition or multiplication: \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \) are both nilpotent, but neither their sum nor their product (in either order) is.

c-alt) A matrix ring over a field is a simple ring, so the only two-sided ideals of R are 0 and R, but the set $\text{rad}(0)$ is neither of those.

8. (Aug-08.2) Let $S = \mathbb{Z} \oplus \mathbb{Z}$, and $R = \{(a, b) \in S : a \equiv b \mod 6\}$.

(a) Show that R is a finitely-generated \mathbb{Z}-module and conclude that R is a Noetherian ring.

(b) Prove that the ideal $P = \{(a, 0) \in R : a \equiv 0 \mod 6\}$ is prime in R.

(c) If Q is a primary ideal of R with $P = \text{rad}(Q)$, show that $Q = P$.

Solution:

a) It is easy to see that $R = \{(a, a+6k), a, k \in \mathbb{Z}\}$, so R is generated by $(1, 1)$ and $(0, 6)$. Since \mathbb{Z} is Noetherian, so is R.

a-alt) S is a Noetherian \mathbb{Z}-module, so any submodule (e.g., R) is Noetherian as well, and a Noetherian module is finitely-generated.

b) Suppose $(a, b) \cdot (c, d) = (6t, 0)$; then one of b, d is zero. By interchanging, we can assume $b = 0$; then since $(a, b) \in R$ we see $a \equiv 0 \mod 6$, so $(a, b) \in P$. So P is prime.

b-alt) Observe that the homomorphism $\varphi : R \to \mathbb{Z}$ sending $(a, b) \mapsto b$ is surjective and has kernel P. The first isomorphism theorem then says $R/P \cong \mathbb{Z}$, which is an integral domain.

c) If $P = \text{rad}(Q)$ then Q is contained in P, and also there is some element $(a, b) \in Q$ with $(a, b)^n = (6, 0) \in P$ but this forces $(a, b) = (6, 0)$ so $(6, 0)$ hence all of P is in Q so $Q = P$.

c-alt) In fact this result holds if P is any principal prime ideal (x): if $P = \text{rad}(Q)$, we need only see that $x \in Q$: since $x \in P = \text{rad}(Q)$, there is some $y \in Q$ with $y^n = x \in P$. But since P is prime, a trivial induction shows $y \in P$ whence we conclude $x \in Q$.

9. (Jan-12.2) Let R be a commutative ring with 1 and Q be a primary ideal of R. Suppose that $Q = \bigcap X_i$ is a finite intersection of the ideals X_i.

(a) If each X_i is prime, prove that $Q = X_j$ for some j. [Hint: Show that Q is prime.]
(b) If R is Noetherian and each X_i is primary, and the radicals of the X_i are distinct, prove again that $Q = X_j$ for some j.

Solution:

a) We claim that Q is prime. To see this suppose $xy \in Q$. Then since Q is primary we know that $x \in Q$ or $y^n \in Q$. In the latter case we have $y^n \in X_i$ for all i, but then since each X_i is prime (hence equal to its radical) we see $y \in X_i$ for all i, hence $y \in Q = \bigcap X_i$. We conclude that if $xy \in Q$ then $x \in Q$ or $y \in Q$, meaning Q is prime.

The result then follows from: if Q is a prime ideal and $Q = \bigcap X_i$ is a finite intersection of ideals, then some $X_i = Q$. If any X_i contains the intersection of the others, we can throw it away without changing anything. If after we do this we are left with only one X_i then it is equal to Q and we are done. Otherwise, suppose we have 2 or more, and pick $x_k \in X_i \cap \bigcap_{i \neq k} X_i$. Then $x_1 x_2 \cdots x_k \in Q$ whence some $x_j \in Q$ since Q is prime. But this is a contradiction since then $x_j \in X_j$, contrary to our assumption.

b) This follows from the uniqueness part of the primary decomposition theorem: if we reduce this intersection by throwing out ideals contained in the intersection of all the others like in part (a), we get a minimal primary decomposition of Q. There is one associated prime for Q, namely $\text{rad}(Q)$, so there must be only a single X_i that survives, and it must be equal to Q.

b) From taking radicals yields $\text{rad}(Q) = \bigcap \text{rad}(X_i)$, and applying part (a) we see that $\text{rad}(Q) = \text{rad}(X_j)$ for some j and all of the other $\text{rad}(X_j)$ contain elements not in $\text{rad}(X_i)$. Then if we localize Q at the prime ideal $P = \text{rad}(Q)$, because $\text{rad}(X_j) \cap (R \setminus P) \neq \emptyset$ for $j \neq i$, all of the X_j except for X_i are sent to zero. Then taking a contraction shows $Q = X_i$, as desired.

10. (Aug-02.2) Let R be a commutative ring with 1 in which every proper ideal is primary.

(a) If P is a prime ideal and I is any ideal, show that either $I \subseteq P$ or $P = IP \subseteq I$.
(b) If M is a maximal ideal of R, show that M is the set of nonunits of R.
(c) Show that J is prime in R iff for all $r \in R$, $r^2 \in J$ implies $r \in J$.

Solution:

a) If $I \subseteq P$ we are done, so choose $a \in I \setminus P$ and let $b \in P$ be arbitrary. Then $ba \in IP$ so since IP is primary, either $b \in IP$ or $a^n \in IP$: however it cannot be that $a^n \in IP$ since this would imply $a^n \in P$ and primality of P would give $a \in P$, which is not true. Hence $b \in IP$, so $P \subseteq IP \subseteq P$, whence $P = IP$.

b) By part (a), for every ideal I of R, it is either the case that $I \subseteq M$ or $M \subseteq I$. Since M is maximal the latter cannot happen unless $I = M$ or $I = R$, so every proper ideal of R is contained in M, hence R has a unique maximal ideal. Then it is standard to see that a local ring (a ring with a unique maximal ideal) has the property that the maximal ideal is the set of nonunits: a nonunit generates a proper ideal (as it doesn’t contain 1) hence the ideal hence the nonunit must be contained in M, and no unit is contained in M.

c) We only need that J is primary for this part. If J is prime then we immediately have that $r^2 \in J$ implies $r \in J$. Conversely, suppose J is a primary ideal and $xy \in J$. Then either $x \in J$ and we are done, or $y^n \in J$. We claim that $y^n \in J$ implies $y \in J$: this follows by a downward induction on n: if n is even then the criterion implies $y n/2 \in J$; if n is odd then the criterion implies $y n(n+1)/2 \in J$, and in either case we see that a lower power of y is in J.