1. (Aug-12.1) Let p be a prime. For any finite group G, let $\mathbb{B}(G)$ be the subgroup of G generated by all Sylow p-subgroups of G.

(a) Show that $\mathbb{B}(G)$ is the unique normal subgroup of G minimal with respect to having its index not divisible by p.

(b) Let L be normal in G. Show that $\mathbb{B}(L)$ is normal in G and $\mathbb{B}(L) = \mathbb{B}(G)$ if $|G : L|$ is not divisible by p.

(c) Let H be a subgroup of G with $|G : H| = p$. If L is the largest normal subgroup of G contained in H, prove that $|H : L|$ is not divisible by p and deduce that $\mathbb{B}(H)$ is normal in G.

Solution: Let p^n be the largest power of p dividing the order of G.

a) First observe that $\mathbb{B}(G)$ is normal, since conjugating an element of p-power order yields another element of p-power order, hence the same holds for the product of such elements. Now if H is any normal subgroup of G whose index is not divisible by p, its order is divisible by p^n, hence it contains a Sylow p-subgroup of G. Since all Sylow p-subgroups of G are conjugate, we see that H contains all of them, hence contains $\mathbb{B}(G)$.

b) Let $h = g_1 \cdots g_k \in \mathbb{B}(L)$, where each g_i is contained in a Sylow-p subgroup of L. Any G-conjugate of g_i lies in L since L is normal, and each of the g_i is therefore sent to another Sylow-p element of L: thus by the same argument as in part (a), we see $ghg^{-1} \in \mathbb{B}(L)$, hence $\mathbb{B}(L)$ is normal in G. If $|G : L|$ is not divisible by p, then p^n divides $|L|$ hence L contains a Sylow p-subgroup of order p^n which is necessarily a Sylow p-subgroup of G. Then as in part (a), L contains all Sylow p-subgroups of G hence contains $\mathbb{B}(G)$; then by the minimality property of (a) we get $\mathbb{B}(G) = \mathbb{B}(L)$. (Alternatively, one could observe that the p-Sylow subgroups of G are the same as those of L.)

c) First, we observe that any automorphism of G permutes the Sylow p-subgroups, hence fixes $\mathbb{B}(G)$ — thus, $\mathbb{B}(G)$ is characteristic in G. Now, $\mathbb{B}(G)$ is normal in G and contains all p-Sylow subgroups of G (hence of H, since every p-subgroup of G is contained in some p-Sylow subgroup); then $\mathbb{B}(G) \cap H$ is normal in G (since $\mathbb{B}(G)$ is characteristic) and contains a p-Sylow subgroup of H. Hence L hence $\mathbb{B}(G) \cap H$ has order divisible by p^{n-1}, so $|H : L|$ is not divisible by p. For the final statement, we know that $\mathbb{B}(H)$ is normal in H, and by part (b) we know $\mathbb{B}(L) = \mathbb{B}(H)$ so $\mathbb{B}(L)$ is normal in L. Since L is normal in G and $\mathbb{B}(G)$ is characteristic in L, we conclude $\mathbb{B}(H) = \mathbb{B}(L)$ is normal in G.

2. (Aug-12.2) Let F be a field, $R = F[x, y]$, and $I = (x)$.

(a) Prove that I/I^2 is infinite-dimensional as an F-vector space.

(b) Let $S \subset R$ be the subring $S = F + I$, so that I is also an ideal of S. Show that I is not finitely-generated as an ideal of S.

(c) Let M be a maximal ideal of R and $\theta : R \rightarrow R/M$ be the projection map. Then $\theta(S)$ is a ring with $\theta(F) \subseteq \theta(S) \subseteq \theta(R)$. Discuss the nature of the extension $\theta(F) \subseteq \theta(R)$, prove that $\theta(S)$ is a field, and conclude that $M \cap S$ is a maximal ideal of S.

Solution:

a) The elements of I are of the form $x \cdot p(x, y)$ for a polynomial $p(x, y)$. We can write any such element in the form $x \cdot q(y) + x^2r(x, y)$, the image of which in I^2 is $x \cdot q(y)$. Thus we see that I/I^2 is generated as a vector space by x, xy, x^2y, xy^2, x^3y, and is infinite-dimensional.

b) If I were finitely-generated as an ideal of S, then I/I^2 would be a finitely-generated ideal of S/I^2. But the elements of S/I^2 are of the form $c + xp(y)$ where $c \in F$ and $p(y) \in F[y]$, and the only ones in I/I^2 are those with $c = 0$. But then the product of any two terms $xp(y)$ and $xq(y)$ is zero, so I/I^2 has trivial ring structure. The non-finite-generation then follows from part (a), since then finite generation of I/I^2 as a ring is equivalent to finite generation as an F-vector space. (Or, explicitly: if there are only finitely many generators, then it is not possible to obtain the term $x \cdot y^n$ where n is any integer larger than any of the y-degrees of the generators’ images in I/I^2.)
c) \(\theta(R) \cong R/M \) is a field extension of \(\theta(F) \); since \(R \) is Noetherian, this field extension is of finite degree. If \(x \in M \) then \(\theta(S) = \theta(F) \) is a field; otherwise, assume \(x \not\in M \), so that \(x \) is invertible in \(R/M \). We also see that \(S + M = F + I + M \), and \(I + M \) is an ideal of \(R \) containing \(M \), hence since \(M \) is maximal it is either equal to \(M \) or to \(R \); thus \(S + M \) is either \(F + M \) or \(F + R \), so we see \(\theta(S) \) is either \(\theta(F) \) or \(\theta(R) \), hence is a field. By the first isomorphism theorem for rings, we conclude that \(S/(M \cap S) \cong \theta(S) \) is a field, so \(M \cap S \) is a maximal ideal of \(S \).

3. (Aug-12.3):

(a) Suppose \(K, L \subseteq \mathbb{C} \) are Galois over \(\mathbb{Q} \). Show that \(E = KL \) is Galois over \(\mathbb{Q} \).

(b) If additionally \([K : \mathbb{Q}] \) and \([L : \mathbb{Q}] \) are coprime, show that \(\text{Gal}(E/\mathbb{Q}) \cong \text{Gal}(K/\mathbb{Q}) \times \text{Gal}(L/\mathbb{Q}) \), and deduce \(|E : \mathbb{Q}| = |K : \mathbb{Q}| \cdot |L : \mathbb{Q}| \).

(c) Prove there is a subfield \(F \) of \(\mathbb{C} \), Galois over \(\mathbb{Q} \), with \([F : \mathbb{Q}] = 55 \).

Solution:

(a) This is standard: first, observe that \(K \cap L \) is Galois over \(\mathbb{Q} \), since if \(p(x) \in \mathbb{Q}[x] \) is irreducible with a root in \(K \cap L \), then since \(K/\mathbb{Q} \) is Galois all its roots lie in \(K \); similarly all its roots lie in \(L \), so all its roots lie in \(K \cap L \). Now \(KL \) is also Galois over \(\mathbb{Q} \); if \(K \) is the splitting field of \(f(x) \) and \(L \) is the splitting field of \(g(x) \), then \(KL \) is the splitting field of the polynomial \(fg/\text{gcd}(f, g) \).

(b) Continuing part (a): we claim that \(\text{Gal}(KL/\mathbb{Q}) \) is the subgroup \(H \) of \(\text{Gal}(K/\mathbb{Q}) \times \text{Gal}(L/\mathbb{Q}) \) where the actions in both components agree on \(K \cap L \) - to prove this, observe that the map \(\text{Gal}(KL/\mathbb{Q}) \to \text{Gal}(K/\mathbb{Q}) \times \text{Gal}(L/\mathbb{Q}) \) via \(\sigma \mapsto (\sigma \vert_K, \sigma \vert_L) \) is well-defined, and the kernel is the set of maps which are trivial on \(K_1 \) and \(K_2 \) hence on the composite. The image lies in \(H \), so we need only verify that its order agrees with that of \(H \). We have \(|H| = |\text{Gal}(K/\mathbb{Q})| \cdot |\text{Gal}(L/K \cap L)| \) since for every \(\sigma \in \text{Gal}(K/\mathbb{Q}) \) there are \(|\text{Gal}(L/K \cap L)| \) elements whose restrictions to \(K \cap L \) agree with \(\sigma \). We then see that \(|H| = |\text{Gal}(K/\mathbb{Q})| \cdot |\text{Gal}(L/K \cap L)| = |\text{Gal}(K/\mathbb{Q})| \cdot \frac{|\text{Gal}(L/K \cap L)|}{|\text{Gal}(KL/\mathbb{Q})|} = |\text{Gal}(KL/\mathbb{Q})| \).

Then for the deduction in the problem, we just need to observe that given our assumptions, \(K \cap L = \mathbb{Q} \); its degree over \(\mathbb{Q} \) divides both \([K : \mathbb{Q}] \) and \([L : \mathbb{Q}] \), so it must be \(1 \) since these degrees are coprime. (We could of course shorten the original proof by incorporating this assumption.)

(c) We know that \(\mathbb{Q}(\zeta_{23}) \) is cyclic Galois of degree \(\phi(23) = 22 \) over \(\mathbb{Q} \), and \(\mathbb{Q}(\zeta_{11}) \) is cyclic Galois of degree \(\phi(11) = 10 \) over \(\mathbb{Q} \). Then we can take fixed subfields of degrees 11 and 5, which are also Galois and cyclic. By part (b) their compositum is cyclic Galois over \(\mathbb{Q} \) of degree 55.

c-alt) Since 221 is prime and 1 mod 55, then \(\mathbb{Q}(\zeta_{221}) \) is cyclic Galois of order 220, and hence has a subfield of degree 55 that is Galois over \(\mathbb{Q} \).

4. (Aug-12.4): Let \(V \) be an \(n \)-dimensional \(K \)-vector space and \(T : V \to V \).

(a) Suppose there exists \(v \in V \) such that \(V \) is spanned by \(v, T v, T^2 v, \ldots \). Prove that the minimal polynomial of \(T \) equals the characteristic polynomial of \(T \).

(b) As a partial converse, suppose the characteristic polynomial of \(T \) has distinct roots in \(K \). Prove that there exists \(v \in V \) such that \(V \) is spanned by \(v, T v, T^2 v, \ldots \).

Solution:

(a) If \(m(x) \) is the minimal polynomial of \(T \), then for any vector \(w \) we know that \(m(T)w = 0 \), so in particular \(m(T)v = 0 \). But since \(v, T v, \ldots, T^{n-1} v \) are linearly independent, we see that the degree of \(m(x) \) must be \(\geq n \). But \(m(x) \) divides the characteristic polynomial, which has degree \(n \), so they must be equal since they are both monic.

(b) Let \(\lambda_1, \ldots, \lambda_n \) be the eigenvalues of \(T \) with corresponding basis of eigenvectors \(v_1, \ldots, v_n \); by the given assumptions we know that the \(v_i \) are linearly independent. We claim that \(v = v_1 + \cdots + v_n \) has the desired property: to see this, suppose that \(p(T)v = 0 \); then we see that \(0 = p(T)v = \sum p(\lambda_i)v_i \), so since the \(v_i \) are linearly independent we see that \(p(\lambda_i) = 0 \) for each \(\lambda_i \) - now since the eigenvalues of
5. (Aug-12.5) Let R be a not necessarily commutative ring with 1, such that $x^5 = x$ for every $x \in R$.

(a) Show that $J(R) = 0$.

(b) Now assume R is right-Artinian. Prove that R is a direct sum of division rings.

(c) Let D be a division ring direct summand of R. If F is any subfield of D, show that $F = \mathbb{F}_2, \mathbb{F}_3, \text{or } \mathbb{F}_5$.

(d) Deduce that D above is isomorphic to $\mathbb{F}_2, \mathbb{F}_3, \text{or } \mathbb{F}_5$, and conclude that R is commutative.

Solution:

a) If $y \in J$, then $1 - xy$ is a unit for all $y \in R$. But we know that $y(1 - y \cdot y^3) = 0$, so $1 - y^4$ cannot be a unit unless $y = 0$. Hence $y \not\in J$ unless $y = 0$.

b) A right-Artinian ring has a finite number of maximal right ideals m_1, \ldots, m_k, as otherwise $m_1, m_1\cap m_2, \ldots$ would yield an infinite decreasing chain of right ideals. Now since the Jacobson radical is the intersection of the maximal right ideals of R, part (a) implies that $\cap m_k = 0$. Now by the Chinese Remainder Theorem, we see that $R \cong \bigoplus (R/m_k)$, since by maximality it must be the case that $m_i + m_j = R$ for any (i, j), and so $\prod m_j = \cap m_j = 0$. Finally, R/m_k is a division ring.

c) Suppose F is a field in which $x^5 - x = 0$ for all $x \in F$. By unique factorization we see that $|F| \leq 5$, and so $|F|$ can only be 2, 3, 4, or 5. It is then trivial to see that $|F| = 2, 3, 5$ work, but $|F| = 4$ does not work.

d) If $z \in D$ is any other element of D, then $F(z)$ is also commutative hence also a subfield of D; thus, $F(z) = F$, so $z \in F$ hence $D = F$. Thus, R is a direct sum of fields hence commutative.