SOLUTIONS FOR JANUARY 2012

(1) (a) Let P be a Sylow-11 subgroup of G. Then check that $|\text{Syl}_G(11)|$ can be either 1 or 56. If it is 56, then the normalizer of P in G has order $4312/56=77$. If it is 1, then the P is normal in G, thus taking a subgroup Q of order 7, PQ has order 77.

(b) Let S be the subgroup of order 77 (prove that it is actually isomorphic to $\mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/11\mathbb{Z}$), and let Q be its Sylow-7 subgroup. Then let T be a Sylow-7 subgroup of G containing Q. Then T is abelian, thus normalizing Q, so the normalizer of Q contains a Sylow-7 and Sylow-11 subgroup of G, thus its index divides 8.

(c) Finally, if we have a subgroup of index dividing 8, and G is simple, then $|G|$ divides 8!, which is not true in our case.

(2) (a) Assume all of X_i are prime. Then by taking radicals, we obtain: $\sqrt{Q} = \bigcap_{i=1}^k \sqrt{X_i} = \bigcap_{i=1}^k X_i = Q$, thus Q is prime (we are using that Q is primary here). Then $\prod X_i \subseteq \bigcap X_i = Q$, thus there exists an $X_i \subseteq Q = \bigcap X_i$, which means that $Q = X_i$.

(b) Assume that X_i’s are primary and R is noetherian. Also we can assume that X_i are minimal decomposition of Q (if it was not minimal, we can throw out some X_i’s). By the uniqueness of the decomposition, we actually obtain $k = 1$, and $Q = X_1$, which we wanted to prove.

(3) (a) The coefficients of the minimal polynomial are algebraic over K, since they are polynomials of the conjugates of α. Thus they are in A, thus they are in $A \cap F = K$.

(b) By the primitive element theorem we have that $B = K[\beta]$. By a) the minimal polynomial of β over K and over F are the same. Since the degree of the minimal polynomial is the same as the order of the field extension, we are done.

(c) Since $[A : K] = \sup\{[B : K]|K \subseteq B \subseteq A; [B : K] < \infty\}$, we are done.

(4) (a) Let S_λ be the eigenspace of S to eigenvalue λ. Then let $v \in S_\lambda$. Then $\lambda T v = T(\lambda v) = T(Sv) = S(Tv)$, thus $Tv \in S_\lambda$.

(b) If $k = 2$, then we saw previously that T acted on S_λ. Thus T has an eigenvector from S_λ, thus T ans S have a common eigenvector. If $k > 2$ we proceed by induction. So, let V_e be the subspace of common eigenvectors of A_1, ..., A_{k-1}. Since A_k acts on the eigenvectors, thus A_k acts on V_e. Again, A_k has an eigenvector from V_e, we are done.

(c) Let’s take a common eigenvector v_1, and let V_1 be its linear span. Now, A_1, ..., A_k act on V/V_1, they commute, thus they have a common eigenvector. Let v_2 be any lift of this eigenvector to V. Now, v_1 and v_2 span V_2, we again take V/V_2, find eigenvector, lift it to V, ... It is easy to see that this sequence of V_i satisfies the properties we want.
(5) (a) Let’s pass to the algebraic closure of K. Then G has a Jordan-form. Since G is of order 4, one eigenvector should correspond to an eigenvalue λ which is primitive forth root of unity. Since the determinant should be in K and K does not have a primitive forth root of unity, thus the other entry in the diagonal is also a primitive forth root of unity: λ or $-\lambda$. Since the trace is also in K, and again K does not have a primitive forth root of unity, thus the other entry in the diagonal equals $-\lambda$, so $\det G = 1$ and $\text{tr} G = 0$.

(This solution works also if K is of characteristic 2)

(b) It is the operator: rotation by 90°. How does it look like as a matrix?

(c) Check that the following matrices are of order 4:

$$g = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}, h = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, gh = \begin{pmatrix} b & -a \\ -a & -b \end{pmatrix}.$$