Problem 1. Let $X = A \cup B$ be a topological space, which is a union of two subspaces $A, B \subseteq X$.

1. Assume that A and B are closed, that the pairs $(X, A), (X, B), (A, A \cap B),$ and $(B, A \cap B)$ have the homotopy extension property, and that $A, B, A \cap B$ are all contractible. Prove that X is contractible.

2. Given an example of $X = A \cup B$ with A open and B closed such that $A, B,$ and $A \cap B$ are contractible, but X is not. Justify your answer.

Proof. For a space Y to be contractible, it means that we have a homotopy between the identity map on Y and the constant map at a point y_0; that is, a continuous function $F: Y \times I \to y_0$ such that $F(y, 0) = y$ and $F(y, 1) = y_0$ for all $y \in Y$. Fix $x_0 \in A \cap B$. Since $A \cap B$ is contractible, we have a map $H: A \cap B \times I \to x_0$ so that $H(x, 0) = x$ for $x \in A \cap B$ and $H(x, 1) = x_0$. Also, we know that A is a contractible space by assumption, so there is a map $G_A : A \times I \to x_0$ so that $G(a, 0) = a$ for all $a \in A$ and $G(a, 1) = x_0$. Notice that $G_A|_{A \cap B}(a, 0) = a$ for all $a \in A \cap B$ so $G_A|_{A \cap B}$ is a lift of the homotopy H at time $t = 0$. Since (X, A) has the homotopy extension property, we can lift the homotopy H by a homotopy $\tilde{H}_A : A \times I \to x_0$ so that $\tilde{H}_A|_{A \cap B} = H(x, t)$ for all values of t. Similarly, we know that there exists a homotopy $\tilde{H}_B : B \times I \to x_0$ with $\tilde{H}_B(x, 0) = x$ and $\tilde{H}_B(x, 1) = x_0$ such that when we restrict this homotopy to $A \cap B$ we have the homotopy H. We now consider the function $G : X \times I \to x_0$ such that $G(x, t) = \tilde{H}_A(x, t)$ if $x \in A$ and $G(x, t) = \tilde{H}_B(x, t)$ if $x \in B$. Note that this function is well defined for $x \in A \cap B$ since both \tilde{H}_A and \tilde{H}_B were created to extend H. Now G is a continuous function such that $G(x, 0) = x$ for all $x \in X$ and $G(x, 1) = x_0$, so we see that X is a contractible space.

For part 2, take X to be S^2. Fix x_0 on the equator of S^2 and fix a closed half disk of radius δ around x_0; call this half-neighborhood U. Let B be the lower hemisphere of S^2 union U; let A be the upper hemisphere (plus a radius ϵ ball further over the equator) minus U. Now B is homotopic to D^2 and A is homotopic to an open disk, so both A and B are contractible, as is $A \cap B$ which is homotopic to a line segment. However, S^2 is not contractible since $H_2(S^2) = \mathbb{Z}$.

Problem 2. In this problem each circle S^1 is identified with the unit circle in $\mathbb{R}^2 = \mathbb{C}$. Let $X = S^1 \times S^1$ be a torus. Let $p \in S^1$ and consider two subspaces $\Gamma_1 = S^1 \times \{p\}$ and $\Gamma_2 = \{p\} \times S^1$ of X. Consider two maps $f_1 : S^1 \to \Gamma_1$ and $f_2 : S^1 \to \Gamma_2$ given by
\(f_1(e^{i\theta}) = e^{i6\theta} \) and \(f_2(e^{i\theta}) = e^{i7\theta} \). Let \(D \) be the standard 2-dimensional disk. Compute the fundamental group and singular homology (with integer coefficients) of the space \(Y := X \cup_{f_1 \cup f_2} (D \cup D) \) is the space obtained by gluing two copies of \(D \) to \(X \) according to \(f_1 \) and \(f_2 \).

Proof.

Problem 3. Let \(G \) be a finitely generated abelian group. Find a finite-dimensional path-connected topological space \(X_G \) with \(\pi_1(X_G) = G \).

Proof. By the fundamental theorem for finitely generated abelian groups, we know that we can write \(G = \bigoplus_{i=1}^{k} \mathbb{Z} \oplus \bigoplus_{j=1}^{l} \mathbb{Z}_{m_j} \) for integers \(k, l, \) and \(m_j \). Since \(\pi_1(X \times Y) = \pi_1(X) \oplus \pi_1(Y) \), we can build our space \(X_G \) by finding topological spaces \(X_i \) with \(\pi_1(X_i) = \mathbb{Z} \) and \(\pi_1(X_{m_j}) = \mathbb{Z}_{m_j} \) for each integer \(m_j \) and taking their product. Now \(S^1 \) has the property that \(\pi_1(S^1) = \mathbb{Z} \), so it remains to find a topological space with \(\pi_1(X_{m_j}) = \mathbb{Z}_{m_j} \). However, it is a fact that for a CW-complex \(Y \), \(\pi_1(Y) \) is simply the free group generated by the number of 1-cells of \(Y \) subject to the relations imposed by the attaching maps of the 2-cells. Hence for an integer \(m_j \), if we let \(X_{m_j} \) be \(S^1 \) with a 2-cell attached to \(S^1 \) a total of \(m_j \) times, we will have that \(\pi_1(Y) = \langle x \rangle / x^{m_j} \), which is \(\mathbb{Z}_{m_j} \).

Problem 4. Given an integer \(p > 1 \) and integers \(l \) relatively prime to \(p \) define the lens space \(L_{l/p} \) to be the orbit space of the unit sphere \(S^3 \subseteq \mathbb{C}^2 \) under the action of the group \(\mathbb{Z}_p \) generated by the rotation

\[
\rho(z_1, z_2) = (e^{2\pi i/p}z_1, e^{2\pi i/p}z_2)
\]

Construct a CW structure on \(L_{l/p} \) and compute its cellular homology with coefficients in \(\mathbb{Z}, \mathbb{Z}_p, \) and \(\mathbb{Z}_q \) where \(q \) is prime. (By a CW structure on a space \(X \) we mean a CW complex whose underlying topological space is homeomorphic to \(X \).)

Proof. To construct a CW-structure on \(L := L_{l/p} \), we first construct a CW-structure on \(S^3 \) and then pass to the orbit space \(L \). For a given complex number \(z \in \mathbb{C} \), we write \(z = re^{i\theta} \). For \(r \) ranging from 0 to \((p - 1) \), we create \(p \) 0-cells given by:

\[
e_r^0 = \{(z_0, 0) | \arg(z_0) = \frac{2\pi r}{p}\}
\]

We next add \(p \) 1-cells to our space attached via homeomorphisms on the boundaries. We enumerate the \(p \) 1-cells by:

\[
e_r^1 = \{(z_0, 0) | \frac{2\pi r}{p} < \arg(z_0) < \frac{2\pi (r + 1)}{p}\}
\]

Likewise, we attach \(p \) 2-cells via homeomorphisms on their boundaries. We enumerate the \(p \) 2-cells by:

\[
e_r^2 = \{(z_0, z_1) | \arg(z_1) = \frac{2\pi r}{p}\}
\]
Finally, we add p 3-cells by homeomorphisms on their boundaries. The 3-cells are listed as follows:

$$e_3^j = \{(z_0, z_1) | \frac{2\pi r}{p} < \arg(z_1) < \frac{2\pi(r + 1)}{p}\}$$

Note that the cell structure we have defined covers all of S^3 and therefore gives a CW-structure to the space. As \mathbb{Z}_p cyclically permutes these pth roots of unity, we see that for each dimension $0 \leq i \leq 3$, \sim relates all of the cells e_i^j. Therefore when we consider the orbit space L we obtain a space with one cell in each dimension $0 \leq i \leq 3$.

We now proceed to describe the maps d_i as they relate to S^3 as this will aid us in our computation of the homology groups of L. At each stage of our construction of the cell structure on S^3, we attached our cells along their boundaries by homeomorphisms; hence the Δ_{ij} coefficients which arise in the cellular boundary formula will always be plus or minus one. We begin by computing $d_1(e_1^j)$ for $0 \leq i \leq p - 1$. For each e_1^j, we attached a single 1-cell between e_0^j and e_0^{j+1} homeomorphically along the boundary (these subscripts are always to be read modulo p). Using the cellular boundary formula, we compute $d_1(e_1^j) = \sum_{j=0}^{p-1} \Delta_{ij} e_0^j$.

Note that the Δ_{ij} is the degree of the map $q \circ \varphi_i$, where q is the quotient map from $(S^3)^{(0)}$ to S_0^3, and φ_i is the attaching map of e_i^1. If $j \neq i$ or $i + 1$, then we did not attach a 1-cell and $\Delta_{ij} = 0$. If $j = i$ or $i + 1$, then φ_i is a homeomorphism and thus $\Delta_{ij} = 1$ or -1, depending on orientation. Thus $d_1(e_1^j) = e_0^i - e_0^{i+1}$.

We next compute $d_2(e_1^j) = \sum_{j=0}^{p-1} \Delta_{ij} e_1^j$ for S^3. To compute this quantity, we must compute $\Delta_{ij} = \deg(q \circ \varphi_i)$, where φ_i is again the attaching map of e_i^2 and q is the collapse of the 2-skeleton onto the 1-cell S_0^1. Now for each e_i^2, we attached homeomorphically along the boundary and the boundary of each e_i^2 covers all 1-cells. This makes $\Delta_{ij} = 1$ for all e_i^j and we have that $d_2(e_1^j) = \sum_{j=0}^{p-1} e_1^j$.

Finally, we compute $d_3(e_1^j) = \sum_{j=0}^{p-1} \Delta_{ij} e_2^j$ for S^3 in a similar manner to how we computed d_1. Note that in our cell structure for S^3 we only attached a three cell between adjacent two cells (again, adjacent being thought of modulo p). This makes $\Delta_{ij} = 0$ for $j \neq i$ or $i + 1$, where $\Delta_{ii} = 1$ and $\Delta_{i(i+1)} = -1$ as our boundaries were attached homeomorphically and with respect to orientation. Hence $d_3(e_1^j) = e_2^j - e_2^{j+1}$.

In summary, we have created a cells structure on S^3 having p cells in each dimension. As the images of a point (z_0, z_1) under the map h correspond to the action of \mathbb{Z}_p on the arguments of z_0 and z_1, we found that all p of the cells in each dimension became identified in the orbit space; hence we obtained a CW-structure on L having one cell in each dimension 0 through 3. Finally, we computed the boundary maps d_i on the cell structure of S^3 in order to simplify the calculation of homology groups.
The boundary maps of S^3 were given by:

\[
\begin{align*}
d_1(e^1_i) &= e^0_i - e^0_{i+1} \\
d_2(e^2_i) &= \sum_{j=0}^{p-1} e^2_j \\
d_3(e^3_i) &= e^2_i - e^2_{i+1}.
\end{align*}
\]

We first compute the homology of $L = L_{4/p}$ with integer coefficients. For this, we consider the cellular chain complex:

\[
0 \xrightarrow{d_4} \mathbb{Z} \xrightarrow{d_3} \mathbb{Z} \xrightarrow{d_2} \mathbb{Z} \xrightarrow{d_1} \mathbb{Z} \xrightarrow{d_0} 0
\]

Both d_4 and d_0 must be the zero map as they are maps either to or from the trivial group. Additionally, we know that we must have $H_0(L) = \mathbb{Z}$ as L is a connected space. Since $H_0(L) = \frac{\ker(d_0)}{\text{Im}(d_1)}$ and d_0 is the zero map, we must have $\mathbb{Z} = \frac{\mathbb{Z}}{\text{Im}(d_1)}$, so we must have that $\text{Im}(d_1) = 0$ and d_1 is the zero map. We next determine the map d_2 by seeing where d_2 sends the generator for \mathbb{Z}, e^2_0. We compute $d_2(e^2_0)$ using the cellular boundary formula to see that $d_2(e^2_0) = \sum_\beta \Delta_{\alpha\beta} e^1_\beta$. As L has only one 1-cell, this formula simplifies to $d_2(e^2_0) = \Delta_{\alpha\beta} e^1_\beta$. Our computation of $\Delta_{\alpha\beta}$ is also simplified by the fact that L has only one 1-cell since this makes $L^{(1)} = S^3_0$, and the collapsing map q does not collapse anything. To determine the action of the attaching map φ, we compare with the d_2 map of S^3 and see how this map changes in the orbit space.

In S^3, we saw that $d_2(e^2_0) = \sum_{j=0}^{p-1} e^1_j$. As all of the e^1_j are associated in the orbit space, we see that $d_2(e^2_0) = pe^1_j$ when we pass to the orbit space (e^2_0 attaches once to each of the p elements of the equivalence class). Hence d_2 is just multiplication by p, and we see that $\text{Im}(d_2) = p\mathbb{Z}$. Since $H_1(L) = \frac{\ker(d_1)}{\text{Im}(d_2)}$, we have that $H_1(L) = \mathbb{Z}/p\mathbb{Z} = \mathbb{Z}_p$. As multiplication by p is injective, we see that $\ker(d_2) = 0$. Knowing that $H_2(L) = \frac{\ker(d_3)}{\text{Im}(d_2)}$ and $\ker(d_2) = 0$, we conclude that $H_2(L) = 0$. To complete this calculation, we must compute d_3 as $H_3(L) = \frac{\ker(d_3)}{\text{Im}(d_2)}$. However, as d_4 is the zero map, we have that $H_3(L) = \ker(d_3)$. Now $d_3(e^3_0) = \Delta_{\alpha\beta} e^2_\beta$ since L has only one 2-cell. As was the case when we computed d_2, we know that $L^{(2)} = S^2$, and so we do not need to consider the collapsing map, only the attaching map φ. Now d_3 on S^3 was given by $d_3(e^3_0) = e^2_i - e^2_{i+1}$, but as $e^2_i = e^2_{i+1}$ in the orbit space, we see that $\deg(\Delta_{\alpha\beta}) = 0$ in L as the element e^2_i appears with its inverse in the attaching map. Thus d_3 is also the zero map and $H_3(L) = \ker(d_3) = \mathbb{Z}$. For a CW-complex, we know that $H_i^{CW}(X) = 0$ whenever X has no i-cells. As L only has cells in dimensions 0 through 3, we conclude that $H_i(L) = H_i^{CW}(L) = 0$ for $i > 3$. In summary, the homology groups for L with
integer coefficients are:

\[H_0(L) = H_3(L) = \mathbb{Z} \]
\[H_1(L) = \mathbb{Z}_p \]
\[H_i(L) = 0 \quad \forall i \neq 0, 1, 3 \]

Finally, we compute the homology of the space \(L \) with \(\mathbb{Z}_p \) coefficients. For this, we consider the following cellular chain complex:

\[
0 \overset{d_4}{\longrightarrow} \mathbb{Z}_p \overset{d_3}{\longrightarrow} \mathbb{Z}_p \overset{d_2}{\longrightarrow} \mathbb{Z}_p \overset{d_1}{\longrightarrow} \mathbb{Z}_p \overset{d_0}{\longrightarrow} 0
\]

Now all of the maps \(d_i \) for \(0 \leq i \leq 4 \) are identical to the maps that we computed when using \(\mathbb{Z} \) coefficients; That is, the maps \(d_4, d_3, d_1, \) and \(d_0 \) are all zero maps and \(d_2 \) is multiplication by \(p \). However, multiplication by \(p \) read modulo \(p \) is the zero map, so when we compute homology using \(\mathbb{Z}_p \) coefficients we find that all of the \(d_i \) maps are zero. This means that \(H_i(L; \mathbb{Z}_p) = \ker(d_i) = \ker(d_{i+1}) = \mathbb{Z}_p \) whenever \(i \leq 3 \) and \(H_i(L; \mathbb{Z}_p) = 0 \) for \(i > 3 \).

Finally, we mention the homology groups with \(\mathbb{Z}_q \) coefficients for \(q \) a prime number. Here, it matters if \(q \) and \(p \) are coprime or not. If \(q \) is coprime to \(p \), we will have that multiplication by \(p \) is injective, and the groups will be the same as for integer coefficients (replacing \(\mathbb{Z} \) by \(\mathbb{Z}_q \)). If \(q \) is NOT coprime to \(p \) the \(q \) must divide \(p \) since \(q \) is prime, and multiplication by \(p \) will be the trivial map, and the homology groups will agree with \(\mathbb{Z}_p \) coefficients (except with \(\mathbb{Z}_q \) instead of \(\mathbb{Z}_p \)).

Problem 5. Show that if a topological space \(X \) is a union of contractible sets then all cup products of positive dimension vanish.

Proof. For this problem, I think we are to assume that the wording is meant to be that if \(X \) is a union of two contractible sets then this property holds. Otherwise, this problem is incorrect as the torus, a compact surface, admits a finite open cover; thus we can write the torus as a finite union of contractible sets, but cup products are definitely non-trivial on the torus. We therefore assume that we can write \(X = A \cup B \) where each of \(A \) and \(B \) is contractible. From the long exact sequence for the pair in cohomology, we have:

\[
\ldots \to H^{i-1}(A; R) \to H^i(X, A; R) \overset{j^*}{\to} H^i(X; R) \to H^i(A; R) \to \ldots
\]

Since \(H^k(A; R) = 0 \) for all \(k \) since \(A \) is contractible, we see that \(j^* \) induces an isomorphism between \(H^i(X, A; R) \) and \(H^i(X; R) \) for all \(i > 0 \), where \(j^* \) is the inclusion map. By an analogous argument, we can conclude that the inclusion map also induces an isomorphism between \(H^i(X, B; R) \) and \(H^i(X; R) \) when \(i > 0 \).

Next, we use the relative version of cup products to demonstrate that all cup products between \(H^i(X, A; R) \) and \(H^k(X, B; R) \) are trivial. For \(\alpha \in H^i(X, A; R) \) and \(\beta \in H^k(X, B; R) \), we know that \(\alpha \cup \beta \in H^{i+k}(X, A \cup B; R) \). However, \(X = A \cup B \) by assumption and so \(H^{i+k}(X, A \cup B; R) = H^{i+k}(X, X; R) = 0 \). Hence all cup products between \(H^i(X, A; R) \) and \(H^k(X, B; R) \) are trivial. However, the inclusion map \(j^* \)
induces an isomorphism between $H^i(X; R)$ and $H^i(X, A; R)$ for $i > 0$ and between $H^k(X, B; R)$ and $H^k(X; R)$ when $k > 0$. By the naturality of the cup product, we conclude that all cup products between $H^i(X; R)$ and $H^k(X, R)$ are trivial whenever $i, k \neq 0$.

Problem 6. Show that $H^n_c(X \times \mathbb{R}; \mathbb{Z}) = H^{n-1}_c(X; \mathbb{Z})$ for all n.

Proof. I am not sure how to do this problem, but I think there is a version of Meyer-Vietoris for homology groups with compact support which gives the answer fairly readily.