August 2014 Qualifying Exam

Differential Topology: 751 - 761

Thursday, August 21, 2014

Do two 751 problems and two 761 problems. All carry equal marks. If you think a problem is badly stated, state precisely what you think is intended, but do not interpret a question so that it becomes trivial.

Note: throughout the exam, if you are given a space X that is homeomorphic to a cell complex, and you are also given a subspace $Y \subset X$ that is homeomorphic to a cell complex, then you may assume that Y is a subcomplex of X.

Throughout the exam, S^n will be the n-sphere.

751 Problems

1. (a) Let X be a compact connected subset of S^3 homeomorphic to a 1-dimensional cell complex. Prove that $H_1(S^3 - X)$ is free abelian of the same rank as $H_1(X)$ and that $H_n(S^3 - X) = 0$ for $n > 1$.

 (b) Let $X \subset S^3$ be homeomorphic to the disjoint union of two circles, and let Y be the disjoint union of two disks. Build a space Z by attaching Y to S^3 by identifying ∂Y and X via a homeomorphism. Compute the homology groups of Z.

2. Let M be a compact subset of S^3 homeomorphic to a 3-manifold with nonempty boundary. Show that $H_1(M; \mathbb{Z})$ has no torsion.

3. Let X be a surface of genus 2 and Y a torus with one boundary component (i.e., a torus from which an open disk has been removed). Let W be a nonseparating circle in X. Let Z be the space obtained by attaching Y to X by identifying W and ∂Y via a homeomorphism.

 (a) Compute the fundamental group and all the homology groups of Z.

 (b) Show that Z retracts onto the wedge of two circles. Does Z deformation retract onto the wedge of two circles? Rigorously justify your answer.

 (c) Show that Z has a 3-fold irregular covering space.
761 Problems

Recall that a subset $S \subset \mathbb{R}^N$ is an embedded submanifold of dimension k provided that for every point $p \in S$ there is an open ball $B_{\epsilon}(p) \subset \mathbb{R}^N$ and a smooth immersion from an open set $U_{\epsilon} \subset \mathbb{R}^k$

$$\Psi: U_{\epsilon} \to \Psi(U_{\epsilon}) = B_{\epsilon}(p) \cap S \subset \mathbb{R}^N$$

such that Ψ is a homeomorphism onto its image.

4. Let $F: \mathbb{R}^N \to \mathbb{R}^{N-k}$ be a smooth map. Let $p \in \mathbb{R}^{N-k}$ be a regular value of F. Use the Inverse Function Theorem to prove that

$$S := F^{-1}(p) := \{ x \in \mathbb{R}^N \mid F(x) = p \}$$

S is an embedded k dimensional submanifold of \mathbb{R}^N.

5. Prove that the tangent bundle to S^3 is trivial

$$TS^3 \cong S^3 \times \mathbb{R}^3.$$

by exhibiting three explicit linearly independent vector fields X_1, X_2, X_3 (on S^3).

6. Consider $S^2 \subset \mathbb{R}^3$ in the usual way. Let $p \in S^2$. Define a two form ω_p on T_pS^2 by the rule

$$\omega_p(v, w) := (p, v \times w)$$

where $v \times w$ is the cross product on vectors in \mathbb{R}^3 and (\cdot, \cdot) denotes the dot product. Using stereographic coordinates (from the north pole, for example) show that ω_p varies smoothly with p, that is, is a smooth differential two form on S^2.

2