Problem 1. Let $\Delta \subseteq S^n \times S^n$ denote the diagonal subspace. Show that the projection $f : (S^n \times S^n \setminus \Delta) \to S^n$ given by $(x,y) \mapsto x$ is a homotopy equivalence.

Proof. To show that f is a homotopy equivalence, we must exhibit a map $g : S^n \to (S^n \times S^n \setminus \Delta)$ so that $f \circ g \sim \text{id}_{S^n}$ and $g \circ f \sim \text{id}_{S^n \times S^n \setminus \Delta}$. Let $g : S^n \to (S^n \times S^n \setminus \Delta)$ send x to $(x, -x)$. Then $f \circ g(x) = f(x, -x) = x$, so $f \circ g = \text{id}_{S^n}$. We must therefore show that $g \circ f$ and the identity map on $S^n \times S^n \setminus \Delta$ are homotopic; that is, there is a map $H : (S^n \times S^n \setminus \Delta) \times I \to (S^n \times S^n \setminus \Delta)$ with the property that $H(x,y,0) = g \circ f(x,y) = (x, -x)$ and that $H(x,y,1) = (x,y)$. Consider the map H given by $H(x,y,t) = (x, \frac{ty-(1-t)x}{\|ty-(1-t)x\|^2})$. This map is continuous as the line through y and $-x$ never passes through the origin since $y \neq x$ for all $x \in S^n$. We see that H has the desired properties; that is, $H(x,y,0) = (x, -x)$ and $H(x,y,1) = (x,y)$, so we have the homotopy we desire, and we have shown that the spaces are homotopy equivalent.

Problem 2. Let $X = \mathbb{C}P^n$ denote complex projective space of dimension $2n$.

1. Prove that X is compact, connected $2n$-dimensional manifold.
2. Show in detail that X can be given a CW-complex structure with one cell in every even dimension $i = 0, 2, \ldots, 2n$.
3. Calculate the cohomology ring $H^*(X; \mathbb{Z})$.
4. Show that if n is even, then $\mathbb{C}P^n$ admits no orientation reversing homotopy equivalence.

Proof. We start with the definition of $\mathbb{C}P^n$ as the set of lines through the origin in \mathbb{C}^{n+1}, i.e. a vector $\vec{v} \in \mathbb{C}^{n+1}$ which passes through the origin becomes associated with $\lambda \vec{v}$ for all $\lambda \in \mathbb{C}$ with $\lambda \neq 0$. Alternatively, we can represent a vector by its unit vector and obtain $\mathbb{C}P^n$ as a quotient of the unit sphere of \mathbb{C}^{n+1} under the association $\vec{v} \in S^{2n+1}$ is associated with all $\lambda \vec{v}$ with $|\lambda| = 1$. As $\mathbb{C}P^n$ can be obtained as a quotient of S^{2n+1} which is both compact and connected, we see that $\mathbb{C}P^n$ is both compact and connected. Likewise, we are obtaining $\mathbb{C}P^n$ as an orbit space of a Hausdorff manifold under a fixed point free action ($\lambda \vec{v} = \vec{v}$ if and only if $\lambda = 1$). It is a theorem then that $\mathbb{C}P^n$ is also a manifold of the same (real) dimension as S^{2n+1}, which is $2n$.

1
Next, we inductively place a CW-structure on \(CP^n \) so that it has exactly one cell in each even dimension 0, 2, \ldots, 2n. When \(n = 1 \), we have \(CP^1 \cong S^2 \), which we know has a cell structure with exactly one cell in dimensions 0 and 2, so our base case is established. So assume that we have given a CW-structure to \(CP^{n-1} \) with exactly one cell in each dimension 0, 2, \ldots, 2(n − 1). As we proved in part (1), \(CP^n \) is obtained as an orbit space of \(S^{2n+1} \) under the action of the unit circle in \(C \). We can alternatively obtain \(CP^n \) from \(D^{2n} \) in the following way. Think of \(D^{2n} \subseteq S^{2n+1} \) as the set of vectors of \(S^{2n+1} \) with their last co-ordinate real and non-negative. We can pick as a representative for each vector \(\tilde{v} \in S^{2n+1} \) a representative for \(CP^n \) which lies in \(D^{2n} \), with the only possible ambiguity lying on the boundary of \(D^{2n} \) which is a \(S^{2n-1} \). here, on \(\partial D^{2n} \), we still have the relationship \(\tilde{v} \sim \lambda \tilde{v} \) for \(|\lambda| = 1 \). However, induction tells us that this is the space \(CP^{n-1} \), so we see in this way that \(CP^n \) can be obtained by attaching a \(2n \)-cell to \(CP^{n-1} \), giving \(CP^n \) a CW-structure having precisely one cell in each even dimension 0, 2, \ldots, 2n.

We first claim that \(CP^n \) is an orientable manifold for all \(n \). Now \(\pi_1(CP^1) = \pi_1(S^1) = 0 \). We know that for CW-complexes \(Y \) that \(\pi_1(Y) = \pi_1(Y^{(2)}) \), so we see that \(\pi_1(CP^n) = \pi_1(CP^1) = 0 \) for all \(n \). As such, we see that for all \(n, \pi_1(CP^n) \) has no subgroup of index 2. It is therefore a fact that \(X \) has no connected two-fold cover, and we have that \(CP^n \) is an orientable manifold for all \(n \). We now show that \(H^*(CP^n) = \mathbb{Z}[\alpha]/(\alpha^{n+1}) \) for \(|\alpha| = 2 \). Again proceed by induction. Now \(CP^1 \cong S^2 \) which has the correct ring structure \((\mathbb{Z}[\alpha]/(\alpha^2)) \), so our base case is established. So assume by induction that \(CP^{n-1} \) has the ring structure \(\mathbb{Z}[\alpha]/(\alpha^n) \). This tells us that \(\alpha^{n-1} \in H^{2n-2}(CP^n; \mathbb{Z}) \) is a generator. As \(CP^n \) is an orientable manifold, we know that the cup product pairing is non-singular; that is, there exists \(\beta \in H^2(CP^n; \mathbb{Z}) \) such that \(\alpha^{n-1} \cup \beta \in H^{2n}(CP^n; \mathbb{Z}) \) is a generator. As \(H^2(CP^n; \mathbb{Z}) = \mathbb{Z} \), we see that we can write \(\beta = k\alpha \) for some \(k \in \mathbb{Z} \). So \(\alpha^{n-1} \cup \beta = \alpha^{n-1} \cup k\alpha = k\alpha^n \) is a generator of \(H^{2n}(CP^n; \mathbb{Z}) = \mathbb{Z} \). Since \(k, \alpha^n \) are both integers and \(k\alpha^n \) generates \(\mathbb{Z} \), we see that \(\alpha^n = \pm 1 \), hence \(k \) and \(\alpha^n \) must both be \(\pm 1 \). Either way, we see that \(\alpha^n = \pm 1 \) and thus \(\alpha^n \) generates \(H^{2n}(CP^n; \mathbb{Z}) \), as desired.

Finally, we show that if \(n \) is even then there is no orientation reversal homotopy equivalence of \(CP^n \). This means that we will show that there is no \(f : CP^n \to CP^n \) such that \(f_*([CP^n]) = -[CP^n] \); i.e., no \(f \) such that \(f_* : H_{2n}(CP^n) \to H_{2n}(CP^n) \) sending 1 to -1. It therefore suffices to show that there is no \(f^* : H^{2n}(CP^n) \to H^{2n}(CP^n) \) as these two maps are dual. Now any homotopy equivalence of \(CP^n \) must induce an isomorphism on all cohomology groups of \(CP^n \). Let \(\alpha \in H^2(CP^n; \mathbb{Z}) \) be such that \(H^*(CP^n; \mathbb{Z}) \cong \mathbb{Z}[\alpha]/(\alpha^{n+1}) \). As \(\alpha \) is a generator of \(H^2(CP^n; \mathbb{Z}) = \mathbb{Z} \), we see that any homotopy \(f \) of \(CP^n \) must either send \(\alpha \) to itself or to \(-\alpha \). If \(f^*(\alpha) = \alpha \), then \(f^*(\alpha^n) = \alpha^n = -\alpha^n \), so any such \(f \) would NOT induce an orientation reversing map on \(H^{2n}(CP^n) \). Alternatively, if \(f^*(\alpha) = -\alpha \), we have \(f^*(\alpha^n) = f^*(\alpha^n) = (-\alpha^n) = (-1)^n\alpha^n = \alpha^n \) since \(n \) is even. In either case, we see that \(f^*(\alpha^n) \neq -\alpha^n \), so there is no self homotopy equivalence of \(CP^n \) which reverses orientation when \(n \) is odd.

\[\square \]

Problem 3. Let \(r_d : Z \to Z_d \) be the mod \(d \) reduction homomorphism, and \(r_{dp} : H^*(X; \mathbb{Z}) \to H^*(X; \mathbb{Z}_d) \) be the induced homomorphism on cohomology. For \(c \in H^2(X; \mathbb{Z}_2) \), define \(\beta(c) \in H^4(X; \mathbb{Z}_4) \) as follows:
1. Find \(\tilde{c} \in H^2(X; \mathbb{Z}) \) such that \(r_2(\tilde{c}) = c \).

2. Define \(\beta(c) = r_4(\tilde{c} \cup \tilde{c}) \).

Show that if \(X \) is a compact, simply connected 4-manifold without boundary that \(\beta(c) \) is well defined, i.e. that \(\tilde{c} \) exists and that \(\beta(c) \) is independent of the choice of \(c \).

Proof. I just want to start out with the warning that my proof of this is very tedious.

We begin with some computations as to the homology groups of \(X \). Since \(\pi_1(X) = 0 \), we see that \(\pi_1(X) \) has no subgroup of index two and is therefore an orientable surface. From this we know that \(H_1(X) = \mathbb{Z} = H_0(X) \) and we know that \(H_2(X) \) has no torsion. By Poincare Duality, we know that \(H^i(X; \mathbb{Z}) \cong H_{n-i}(X; \mathbb{Z}) = 0 \). By the UCT for cohomology, we know that \(H^3(X; \mathbb{Z}) = H_3(X)/T_3 \oplus T_2 \), where \(T_i \) represents the torsion subgroup of \(H_i(X) \). Since \(H^3(X) \) is trivial, we can conclude that \(H_3(X) \) has no free part. From this, we know that \(H_3(X) = 0 \) since it has no free part and no torsion. Finally, we conclude from the UCT that \(H_2(X) \) has no torsion; we write \(H_2(X) = \bigoplus_i \mathbb{Z} \). Again by the UCT, we know that \(H^2(X) \cong H_2(X)/T_2 \oplus T_1 \). Since \(T_1 = 0 \) and \(T_2 = 0 \), we know that \(H^2(X; \mathbb{Z}) \cong H_2(X; \mathbb{Z}) \cong \bigoplus_i \mathbb{Z} \). We now wish to compute \(H^2(X; \mathbb{Z}_2) \); we again use the UCT. Now \(H^2(X; \mathbb{Z}_2) = \text{Hom}(H_2(X), \mathbb{Z}_2) \oplus \text{Ext}(H_1(X), \mathbb{Z}_2) \). Since \(H_1(X) = 0 \), we see that \(\text{Ext}(H_1(X), \mathbb{Z}_2) = 0 \) and \(H^2(X; \mathbb{Z}_2) \cong \text{Hom}(H_2(X), \mathbb{Z}_2) \cong \bigoplus_i \mathbb{Z}_2 \). This shows that the map from \(H_2(X_2; \mathbb{Z}_2) \to H^2(X_2; \mathbb{Z}_2) \) is just the map \(r_2 \); i.e. the map which takes the tuple \((x_1, \ldots, x_i) \mapsto (x_1 \equiv \text{mod } 2, \ldots, x_i \equiv \text{mod } 2)) \). We therefore see by the UCT that we have an isomorphism from \(H_2(X_2; \mathbb{Z}_2) \cong H^2(X_2; \mathbb{Z}_2) \) and therefore that such a \(\tilde{c} \) exists for all \(c \in H^2(X; \mathbb{Z}_2) \).

We now must show that \(\beta(c) \) does not depend on the chosen lift \(\tilde{c} \), i.e. if \(\tilde{c}_1 \) and \(\tilde{c}_2 \) are two lifts of \(c \), then \(r_4(\tilde{c}_1 \cup \tilde{c}_1) = r_4(\tilde{c}_2 \cup \tilde{c}_2) \). Now if \(\tilde{c}_1 \) and \(\tilde{c}_2 \) are both lifts of \(c \), say \(\tilde{c}_1 = (x_1, \ldots, x_l) \) and \(\tilde{c}_2 = (y_1, \ldots, y_l) \), then we know that these two points are equivalent mod 2; that is, \(x_1 \equiv y_1 \text{ mod } 2 \), \ldots, \(x_l \equiv y_l \text{ mod } 2 \). We can therefore rewrite the point \(\tilde{c}_2 = (x_1 + 2n_1, \ldots, x_l + 2n_l) \) where each \(n_i \in \mathbb{Z} \). We wish to show that \(r_4(\tilde{c}_1 \cup \tilde{c}_1) = r_4(\tilde{c}_2 \cup \tilde{c}_2) \). To do this, we will show that each coordinate of \(\tilde{c}_2 \cup \tilde{c}_2 \) is off from the corresponding coordinate of \(\tilde{c}_1 \cup \tilde{c}_1 \) by a multiple of 4. To do this, we compute \(\tilde{c}_2 \cup \tilde{c}_2 \):

\[
\tilde{c}_2 \cup \tilde{c}_2 = (x_1 + 2n_1, \ldots, x_l + 2n_l) \cup (x_1 + 2n_1, \ldots, x_l + 2n_l) \\
= ((x_1 + 2n_1) \cup (x_1 + 2n_1), \ldots, (x_l + 2n_l) \cup (x_l + 2n_l)) \\
= (x_1^2 + 4n_1 x_1 + 4n_1^2, \ldots, x_l^2 + 4n_l x_l + 4n_l^2) \\
= (x_1^2 + 4n_1(x_1 + n_1), \ldots, x_l^2 + 4n_l(x_l + n_l))
\]

From this computation, we see that \(\tilde{c}_2 \cup \tilde{c}_2 \) differs from \(\tilde{c}_1 \cup \tilde{c}_1 = (x_1^2, \ldots, x_l^2) \) by a multiple of 4, and hence \(r_4(\tilde{c}_1 \cup \tilde{c}_1) = r_4(\tilde{c}_2 \cup \tilde{c}_2) \), as wanted. \(\square \)
Problem 4. Let D be a standard 2-disk with the boundary S^1 and let $x \neq y$ be two points in the interior of D. Show that there is no homeomorphism $f : D \to D$ that satisfies the following:

1. $f \circ f = id_D$
2. $f|_{S^1} = id_{S^1}$
3. $f(x) = y$

Proof. Suppose for contradiction that such a homeomorphism f exists. Note first that as $f(x) = y$ and $f^2 = id_D$ that $f(y) = f(f(x)) = x$. We consider the space $X = D \setminus \{x, y\}$ and the map induced on X by f. Note that f is still not the identity map on X as f is continuous and therefore cannot swap only the points x and y. Now X deformation retracts to the wedge sum of two circles; let a and b be the loops in $\pi_1(X) = \mathbb{Z} \ast \mathbb{Z}$ which generate $\pi_1(X)$. Now f is not the identity map and therefore $f_* : \pi_1(X) \to \pi_1(X)$ is not the identity map. Now $f_*(a)$ must be a generator, so we must have that $f_*(a) = b$ and as $f^2 = id_D$ we have that f^2 must also be the identity on X; hence $f_*(b) = f_*(f_*(a)) = a$. Let γ be the loop in $\pi_1(X)$ corresponding to traveling around the boundary of D counterclockwise. Now $\gamma \sim ab$, yet we must have that $f_*(\gamma) = \gamma$ since $f|_{S^1} = id_{S^1}$. We therefore have that $ab \sim \gamma = f_*(\gamma) = f_*(ab) = f_*(a)f_*(b) = ba$. However, this is a contradiction as ab is not homotopic to ba in X as $\pi_1(X)$ is not commutative; therefore no such f exists. \qed