Problem 1. Let \(p : \tilde{X} \rightarrow X \) be a cover. Suppose that \(f, g : Y \rightarrow \tilde{X} \) are maps such that \(p \circ f \) and \(p \circ g \) are equal and assume that \(f \) and \(g \) agree at \(y_0 \in Y \). Show that if \(Y \) is connected, then \(f = g \).

Proof. This is really more of a point set problem and the proof is in Hatcher, but I’ll prove it here as well. We will show that the set of points of \(Y \) on which \(f \) and \(g \) agree is both an open and a closed set. Then as this set is non-empty (\(y_0 \) is included, for example) we know that it must be the whole space. Let \(U_\alpha \subseteq X \) be a neighborhood around \(x = p \circ f(y) = p \circ g(y) \) so that \(p^{-1}(x) \) is a disjoint union of homeomorphic open sets \(V_\alpha \). Write \(V_{\alpha,f} \) and \(V_{\alpha,g} \) for the open sets in \(\tilde{X} \) which contain \(f(y) \) and \(g(y) \), respectively. Since both \(f \) and \(g \) are continuous, there exists a neighborhood \(N \subseteq Y \) so that \(f(N) \subseteq V_{\alpha,f} \) and so that \(g(N) \subseteq V_{\alpha,g} \). If \(f(y) \neq g(y) \) then \(V_{\alpha,f} \neq V_{\alpha,g} \) so \(f \neq g \) on all of the open neighborhood \(N \); this makes the set of points on which \(f \) and \(g \) agree closed. On the other hand if \(f(y) = g(y) \), then \(V_{\alpha,f} = V_{\alpha,g} \) so \(f = g \) on \(N \). This makes the set of points on which \(f \) and \(g \) agree open. \(\square \)

Problem 2. For \(n \geq 1 \), let \(f : D^{n+1} \rightarrow \mathbb{R}^2 \) be a map such that \(f(-x) = -x \) for all \(x \in \partial D^{n+1} \). Prove that \(f^{-1}(0) \cap \partial D^{n+1} = \emptyset \).

Proof. Suppose for contradiction that \(f^{-1}(0) \cap \partial D^{n+1} = \emptyset \). As \(f|_{S^n} : S^n \rightarrow \mathbb{R}^2 - 0 \) deformation retracts onto \(S^1 \). By a slight abuse of notation, we use \(f : S^n \rightarrow S^1 \) to refer to this map. Note that \(f \) still has the property that \(f(x) = f(-x) \) for all \(x \in S^n \). When \(n > 1 \), let \(i \) be the inclusion map from \(S^1 \rightarrow S^n \), where we map \(x \in S^1 \) to \((x, 0, 0, \ldots, 0) \), and let \(g \) be the composition \(i \circ f \). Then \(g \) is a map from \(S^n \) to \(S^n \) which is odd, meaning that the degree of \(g \) must also be even. However, \(g \) is clearly not surjective when \(n > 1 \), and surjective maps have degree 0, so we have our contradiction.

When \(n = 1 \), I see no problem with \(f \) being the identity (i.e. the inclusion map) on \(\partial D^2 = S^1 \) and \(f \) being an embedding of \(D^2 \) into \(\mathbb{R}^2 \). Then \(f(S^1) \) is the unit circle in \(\mathbb{R}^2 \), the odd condition of the map is satisfied, and \(f^{-1}(0) \cap S^1 = \emptyset \). \(\square \)

Problem 3. Let \(K \) be a CW-complex with 2-skeleton \(K^{(2)} \). Let \(\phi : K^{(2)} \rightarrow K \) denote the natural inclusion. Prove that the induced homomorphism \(\phi_* : H_n(K^{(2)}) \rightarrow H_n(K) \) is an isomorphism for \(n = 1 \) and surjective for \(n = 2 \).
Proof. Consider the long exact sequence in homology for the pair \((K, K(2))\):

\[
\ldots \to H_i(K(2)) \xrightarrow{\partial_*} H_i(K) \to H_i(K, K(2)) \to H_{i-1}(K(2)) \to \ldots
\]

when \(i = 1\) we have:

\[
H_2(K, K(2)) \to H_1(K(2)) \xrightarrow{\phi_*} H_1(K) \to H_1(K, K(2)) \to \ldots
\]

Now \(K(2)\) is a deformation retract of an open neighborhood containing it, so we know that \(\tilde{H}_i(K, K(2)) \cong \tilde{H}_i(K/K(2))\) via \(q_*\), where \(q : K \to K/K(2)\) is the map collapsing \(K(2)\) to a single point. Now for any CW-complex \(X\) we know that \(H_i(X) = 0\) whenever \(X\) lacks cells in dimension \(i\). As \(K/K(2)\) is a CW-complex lacking cells in dimensions one and two, we know that \(H_i(K, K(2)) \cong H_i(K/K(2)) = 0\) when \(i \in \{1, 2\}\).

The above sequence for when \(i = 1\) then becomes:

\[
0 \to H_1(K(2)) \xrightarrow{\phi_*} H_1(K) \to 0
\]

From this, we know that \(\phi_*\) is an isomorphism by the exactness of the sequence. Now when \(n = 2\) the long exact sequence yields:

\[
H_3(K, K(2)) \to H_2(K(2)) \xrightarrow{\phi_*} H_2(K) \xrightarrow{\theta} H_2(K, K(2))
\]

As stated above, we know that \(H_2(K, K(2)) = 0\), which means that the map \(\theta\) labeled above is the trivial map, and \(\ker(\theta) = H_2(K)\). By exactness, we know that \(\text{Im}(\phi_*) = \ker(\theta) = H_2(K)\), which shows that \(\phi_*\) is a surjective map when \(n = 2\). \(\square\)

Problem 4. Let \(\pi\) be a finitely generated abelian group. Let \(n\) be a positive integer. Construct a CW-complex \(X\) such that \(H_n(X) \cong \pi\), \(H_0(X) = \mathbb{Z}\), and \(H_m(X) = 0\) for all \(m \neq n\).

Proof. See January 2009, problem number 2. \(\square\)

Problem 5. If \(M\) is a manifold with boundary, then the **double** of \(M\) is defined by identifying two copies of \(M\) along their boundaries by the identity map. Let \(M = D^2 \bigcup \bigcup_i D_\epsilon(x_i)\), where \(\{D_\epsilon(x_i)\}\) are mutually disjoint open disks of radius \(\epsilon\) in the interior of \(D^2\) centered at \(\{x_i\}\). Let \(W\) be the double of \(M\). Determine the fundamental group and Euler characteristic of \(W\).

Proof. I must first note that I am going to assume \(D^2\) includes its boundary circle \(S^1\). I will also state the result [without proof, since I do not not think this is the meant interpretation] for the disk without boundary.

We begin by thinking of \(D^2\) as a hemisphere of \(S^2\); to obtain the double of \(M\), we first identify the two boundary circles of the two copies of \(M\) so that we are looking at \(S^2\) with \(2n\) open disks removed. Identifying these \(2n\) balls in pairs along their boundaries via the identity map is equivalent to adding \(n\) handles to \(S^2\). From this, we see that \(W\) is homeomorphic to the orientable surface of genus \(n\), denoted \(M_n\). We therefore know that \(M_n\) can be given a CW-structure having one 0-cell, \(2n\) 1-cells, and
one 2-cell. As $\chi(W) = \chi(M_n) = \sum (-1)^i c_i(M_n)$, where c_i is the number of cells if M_n in dimension i, we see that $\chi(W) = 2 - 2n$. Similarly, we know that the orientable surface of genus n can be obtained as an identification space of a polygonal region P having $4n$ sides according to the labeling scheme $a_1b_1a_1^{-1}b_1^{-1}\ldots a_nb_na_n^{-1}b_n^{-1}$. As all vertices map to a single point in this polygonal region, we know that $\pi_1(W) = \langle a_1, b_1, \ldots, a_n, b_n \rangle$.

As for the space where we are NOT using D^2 with its boundary circle, we get that $\pi_1(W)$ is the free group on $(n(n+1))/2$ letters and that $\chi(W) = 2 - (n(n+1))/2$.

Problem 6. Let T be the two torus and K the Klein bottle. Compute the cohomology ring $H^*(T \times K; \mathbb{Z}_2)$.

Proof. For this, we reference a different problem for $H^*(K; \mathbb{Z}_2)$. Now we know that for any ring R, the cohomology ring of T is $\Lambda_R[\alpha_1, \alpha_2]$, where α_1, α_2 are generators in $H^1(T; R) = R \oplus R$. Now $\Lambda_R[\alpha_1, \alpha_2]$ represents the exterior algebra on 2 generators, meaning that $\alpha_1^2 = \alpha_2^2 = 0$ and such that $\alpha_1\alpha_2 = -\alpha_2\alpha_1$. Now computing $H^*(K; \mathbb{Z}_2)$ is a qualifying exam problem from January 2007 (problem 5), where we saw that $H^*(K; \mathbb{Z}_2) \cong \mathbb{Z}[\beta, \gamma]/(\beta\gamma = \gamma\beta, \gamma^3, \beta^3)$. Since $H^i(T; \mathbb{Z}_2)$ is a finitely generated \mathbb{Z}_2-module for all i and both T and K are CW-complexes, we can use Kunneth’s formula to determine $H^*(T \times K; \mathbb{Z}_2) \cong H^*(T; \mathbb{Z}_2) \otimes H^*(K; \mathbb{Z}_2)$.

Problem 7. Let M^{2n+1} be a compact, connected $(2n+1)$-manifold which is possibly non-orientable. Show that the Euler characteristic of M is zero.