In all cases, when an example is requested, you should both provide the example and proof that the object you write down actually is an example.

(1) A finite group G is said to have property C if, whenever $g \in G$ and n is an integer relatively prime to the order of G, g and g^n are conjugate in G.

(a) (3pt) Give infinitely many non-isomorphic finite groups which have property C.

(b) (3pt) Give infinitely many non-isomorphic finite groups which do not have property C.

(c) (4pt) Show that if G has property C and $\rho : G \to GL_m(\mathbb{C})$ is a homomorphism, then the trace of $\rho(g)$ lies in \mathbb{Q} for every $g \in G$.

(2) Let k be a field. We say a polynomial f in $k[x]$ is a consecutive-root polynomial if it has two roots x_0, x_1 (not necessarily in k) which satisfy $x_1 - x_0 = 1$.

(a) (2pt) Show there is no irreducible consecutive-root polynomial in $\mathbb{Q}[x]$.

(b) (3pt) Let p be a prime number. Show that the polynomial $x^p - x - 1$ in $\mathbb{F}_p[x]$ is irreducible and consecutive-root.

(c) (5pt) Describe the set of irreducible monic consecutive-root polynomials in $\mathbb{F}_p[x]$ of degree at most p.

(3) We say a ring R is von Neumann regular if, for every $a \in R$, there exists an $x \in R$ such that $a = axa$. The element x is called a weak inverse of a. In particular, every division algebra is von Neumann regular (just take $x = 0$ if $a = 0$ and $x = a^{-1}$ otherwise.)

(a) (4pt) Give an example of a commutative von Neumann regular ring which is not a field.

(b) (2pt) Let R be $M_2(\mathbb{C})$ and let a be the nilpotent matrix e_{12} which sends e_1 to 0 and e_2 to e_1. Give a weak inverse for a.

(c) (4pt) Prove that if V is a vector space over a field k, the ring of endomorphisms End_kV is von Neumann regular.

(4) Recall that a right module P for a ring R is said to be projective if, for every surjection of right R-modules $f : N \to P$, there is a map $g : P \to N$ such that g followed by f is the identity on P.

(a) (3pt) Prove that a free R-module is projective.

(b) (3pt) Prove that a right R-module M is projective if and only if there is another right module N such that $M \oplus N$ is a free right R-module.

(c) (4pt) In linear algebra, a “projection” is a matrix A such that $A^2 = A$. More generally, if R is a commutative ring, we might say that an R-projection is an R-module homomorphism $A : R^n \to R^n$ such that $A^2 = A$. For R a commutative ring, prove that a finitely generated R-module M is projective if and only if it is isomorphic to the image of some projection.
(5) Let W_n be the set of $n \times n$ complex matrices C such that the equation

$$AB - BA = C$$

has a solution in $n \times n$ matrices A, B.

(a) (2pt) Show that W_n is closed under scalar multiplication and conjugation.

(b) (4pt) Show that the identity matrix is not in W_n.

(c) (4pt) Give a complete description of W_2 (i.e. a criterion for determining whether a matrix C is in W_2 other than “look around for matrices A and B such that $AB - BA = C$.”)