Algebra Qualifying Exam
August 2001

Do all 5 problems.

1. Let G be a finite group of order $504 = 2^3 \cdot 3^2 \cdot 7$.
 a. Show that G cannot be isomorphic to a subgroup of the alternating group Alt_7. (5 points)
 b. If G is simple, determine the number of Sylow 3-subgroups of G. (5 points)

2. Let R be a commutative ring with 1 and let M be a maximal ideal of R.
 a. Show that the ring R/M^2 has no idempotents other than 0 and 1. (4 points)
 b. We know that M/M^2 is naturally an R/M-module. If R is Noetherian, prove that this module is finitely generated. (2 points)
 c. Finally, assume that $R = K[x_1, x_2, \ldots, x_t]$ is a polynomial ring in finitely many variables over the field K. Prove that $\dim_K(R/M^2) < \infty$. (4 points)

3. Let $F \subseteq E$ be fields and suppose $0 \neq \alpha \in E$ with $E = F[\alpha]$. Assume that some power of α lies in F and let n be the smallest positive integer such that $\alpha^n \in F$.
 a. If $\alpha^m \in F$ with $m > 0$, show that m is a multiple of n. (2 points)
 b. If E is a separable extension of F, prove that the characteristic of F does not divide n. (4 points)
 c. If every root of unity in E lies in F, show that $|E : F| = n$. (4 points)

4. Let A be a real $n \times n$ matrix. We say that A is a difference of two squares if there exist real $n \times n$ matrices B and C with $BC = CB = 0$ and $A = B^2 - C^2$.
 a. If A is a diagonal matrix, show that it is a difference of two squares. (3 points)
 b. If A is a symmetric matrix that is not necessarily diagonal, again show that it is a difference of two squares. (3 points)
 c. Suppose A is a difference of two squares, with corresponding matrices B and C as above. If B has a nonzero real eigenvalue, prove that A has a positive real eigenvalue. (4 points)

5. Let K be a field of characteristic 0 and view the polynomial ring $V = K[x]$ as a K-vector space. Let $M: V \to V$ be the linear operator given by multiplication by x, so that $M(x^n) = x^{n+1}$ for all integers $n \geq 0$. In addition, let $D: V \to V$ be the linear operator given by differentiation with respect to x, so that $D(x^n) = nx^{n-1}$ for all $n \geq 0$. Let L denote the set of all linear operators of the form M^iD^j with $i, j \geq 0$, where $M^0 = D^0 = I$ is the identity operator on V.
 a. Prove that $DM - MD = I$. (3 points)
 b. Show that L is a K-linearly independent set. (4 points)
 c. For all nonnegative integers t, prove that DM^t is in the K-linear span of the set L. (3 points)