ANALYSIS SEP - PROBLEM SET 2
SELECTED PROBLEMS

BALAZS STRENNER

Problem 1. (2010 Aug/2) Let

\[s_N(x) = \sum_{n=1}^{N} (-1)^n \frac{x^{3n}}{n^{2/3}}. \]

Prove that \(s_N(x) \) converges to a limit \(s(x) \) on \([0, 1]\) and that there is a constant \(C \) so that for all \(N \geq 1 \) the inequality

\[\sup_{x \in [0,1]} |s_N(x) - s(x)| \leq CN^{-2/3} \]

holds.

Problem 2. (2005 Aug/1) Assume that \((a_n)_{n=1}^{\infty} \) and \((b_n)_{n=1}^{\infty} \) are sequences of non-negative real numbers such that

(i) \(a_n \leq a_{n+1} \) for any \(n = 1, 2, \ldots \)
(ii) \(b_n \geq b_{n+1} \) for any \(n = 1, 2, \ldots \), and \(\lim_{n \to \infty} b_n = 0. \)
(iii) \(\sum_{n=1}^{\infty} a_n (b_n - b_{n+1}) \) is convergent.

(a) Prove that \(\lim_{n \to \infty} a_n b_n = 0. \)
(b) Show that conclusion (a) may fail if assumption (i) is omitted.

Problem 3. (Part of 2010 Jan/8C) Let \(0 < \varepsilon < 1 \) be fixed. Let \(a_n = (\varepsilon)^n \). Prove that \(|a_n| \leq \frac{c}{n^{1+\varepsilon}} \) where \(c \) depends only on \(\varepsilon \), not on \(n \).

Problem 4. (2011 Jan/1 - first you can try its easier version: 2010 Aug/3) Let \(K \) be continuous function on the square \([0, 1] \times [0, 1]\), and let \(g \) be a continuous function on \([0, 1]\). Show that there is a unique continuous function \(f \) on \([0, 1]\) so that

\[f(x) = \int_0^x K(x, y) f(y) dy + g(x). \]

Problem 5. (2011 Jan/3 - similar problems: 2006 Aug/3) Show that there exists a constant \(C \) such that for all \(x \in [0, 2\pi] \) and \(n = 1, 2, \ldots \)

\[\left| \sum_{k=1}^{n} \frac{\sin(kx)}{k} \right| < C. \]

Hint: Break the sum into two parts for \(kx < 1 \) and \(kx \geq 1 \), respectively.

Date: July 27, 2011.
Problem 6. (2008 Jan/4 - similar problems: 2009 Aug/6, 2006 Jan/1) Let A and B be real numbers. Show that there is a constant C independent of A and B, and N so that

$$\left| \int_{-N}^{+N} \left[e^{i(AX+BX^2)} - 1 \right] \frac{dx}{x} \right| \leq C.$$