1. (Jan-00.4): Let \(A \in M_n(\mathbb{C}) \) and assume that \(A \) has rank 1.

 (a) What are the possible Jordan canonical forms for \(A \)?

 (b) For each of the forms in (a), find the characteristic and minimal polynomial of \(A \).

 Solution:

 a) The rank of an \(k \times k \) Jordan block is \(k \), except when the eigenvalue is zero in which case it is \(k - 1 \) (this follows just by counting pivot columns). Hence the Jordan blocks in the Jordan form can be either (i) \(n - 1 \) of size 1 and eigenvalue 0 and 1 of size 1 and eigenvalue \(\lambda \neq 0 \), or (ii) \(n - 2 \) of size 1 and eigenvalue 0, and 1 of size 2 and eigenvalue 0.

 b) In case (i), the characteristic polynomial is \(x^{n-1}(x-\lambda) \) from the determinant, and the minimal polynomial is \(x(x-\lambda) \) - these two factors are both required, and a trivial check shows that this works. In case (ii), the characteristic polynomial is \(x^n \) from the determinant, and the minimal polynomial is \(x^2 \), since it’s not \(x \), but \(x^2 \) works.

2. (Jan-13.5): Let \(W_n \) be the set of \(n \times n \) complex matrices \(C \) such that the equation \(AB - BA = C \) has a solution in \(n \times n \) matrices \(A \) and \(B \).

 (a) Show that \(W_n \) is closed under scalar multiplication and conjugation.

 (b) Show that the identity matrix is not in \(W_n \).

 (c) Give a complete description of \(W_2 \).

 Solution:

 a) If \(C \in W_n \) with \(AB - BA = C \), then \(rC = (rA)B - B(rA) \) and \(P^{-1}CP = (P^{-1}AP)(P^{-1}BP) - (P^{-1}BP)(P^{-1}AP) \).

 b) The observation to make is that \(\text{tr}(AB) = \text{tr}(BA) \), so for a matrix to be in \(W_n \), it must have trace zero. The identity matrix has trace \(n \), which is not zero.

 c) As in part (b), a matrix in \(W_2 \) must have trace zero. From (a) we may assume that \(C \) is in Jordan form, so the possibilities are \(C = \begin{pmatrix} -a & 0 \\ 0 & a \end{pmatrix} \) or \(C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \); furthermore it is enough to consider \(C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \) and \(C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) by part (a) again. Some calculation shows that \(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) and \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \), so both are possible. We conclude that \(W_2 \) is the set of \(2 \times 2 \) trace-zero matrices.
3. (Jan-11.4): Let V be a finite-dimensional \mathbb{C}-vector space and $T : V \to V$.

(a) Suppose W is a subspace with $T(W) \subseteq W$. Show that the characteristic polynomial $f_S(x)$ of $S = T|_W$ divides the characteristic polynomial $f_T(x)$ of T on V.

(b) Let λ be a root of $f_T(x)$ of multiplicity m and $V_{\lambda} = \{ v \in V : T(v) = \lambda v \}$. Show that $1 \leq \dim_{\mathbb{C}} V_{\lambda} \leq m$.

(c) Find (V, T, λ) such that λ has multiplicity 5 as a root of $f_T(x)$ but $\dim_{\mathbb{C}} V_{\lambda} = 1$.

Solution:

a) Choose a basis for W and extend to one for V. Then T is a block-diagonal matrix $T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$, so $f_T(x) = \det(xI - T) = \det(xI - A) \cdot \det(xI - C) = f_S(x) \cdot \det(xI - C)$.

b) Since λ is a root of the characteristic polynomial, the λ-eigenspace V_{λ} is nontrivial so the dimension is at least 1. For the other part, set $W = V_{\lambda}$ and use part (a): the characteristic polynomial $f_S(x)$ divides $f_T(x)$, but on V_{λ} the characteristic polynomial only has the root $x = \lambda$ hence must be $(x - \lambda)^{\dim V_{\lambda}}$, which must therefore divide $(x - \lambda)^m$.

b-alt) The elementary way to show this inequality is via the reduced row-echelon form of $\lambda I - T$: the number of rows of all zeroes is the dimension of its kernel hence equal to $\dim_{\mathbb{C}} V_{\lambda}$ (because rank is not changed by row-reduction), but this value is clearly bounded by the number of times 0 appears as a root of the characteristic polynomial of $\lambda I - T$, which is m.

b-alt2) Consider the Jordan form of T. The dimension of V_{λ} is the number of Jordan blocks with eigenvalue λ, while the multiplicity of λ as a root of $f_T(x)$ is the total sum of the sizes of the Jordan blocks with eigenvalue λ. Clearly, the latter is at least as big as the former.

c) Such a matrix is given by the Jordan block $J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$; its kernel is 1-dimensional but its characteristic polynomial is x^5. The “alternative” proof makes it clearer where this comes from: the reduced row-echelon form of $\lambda I - T$ is actually forced to be this matrix, as it must be strictly upper-triangular with 4 pivotal columns.

4. (Jan-14.2): Let F be a field and n a positive integer. Let $A \in M_{n \times n}(F)$ such that $A^n = 0$ but $A^{n-1} \neq 0$. Show that any $B \in M_{n \times n}(F)$ that commutes with A is contained in the F-linear span of $I, A, A^2, \ldots, A^{n-1}$.

Note: Compare with Aug-94.4.

Solution: The given information says that the minimal polynomial of A is x^n, so since A is $n \times n$ we see that its characteristic polynomial is also x^n. Now consider the Jordan form of A: the only possibility is that it is a single $n \times n$ Jordan block with eigenvalue 0. By the standard property of the rational canonical form, A is conjugate (over F) to its Jordan form, and conjugating changes nothing, so we can assume

$$A = \begin{pmatrix} 0 & 1 & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \cdots & \cdots \\ \vdots & \vdots & \ddots & \cdots & \cdots \\ \vdots & \vdots & \cdots & 0 & \cdots \\ 0 & \cdots & \cdots & \cdots & 1 \end{pmatrix}.$$

It is then straightforward to see that A^k is the matrix whose entries are all 0s, except that the kth entries above the diagonal are 1s. To get the final result, one can simply multiply out $AB - BA$ for an arbitrary matrix B to check the claim.

Remark: In fact, this result holds for any $n \times n$ matrix A whose minimal polynomial has degree n. Here is a more highbrow proof: $M_{n \times n}(F)$ is a central simple F-algebra, and if we take the n-dimensional subalgebra $S = F[A]$ generated by A, what we want to know is: which elements of $M_{n \times n}(F)$ commute with everything in this subalgebra? Since $M_{n \times n}$ has dimension n^2 and S has dimension n, the double commutator theorem says that the commutant of S is also n-dimensional, hence must actually be just S (since everything in S commutes with everything else in S): hence the only matrices which commute with A are those in S: namely, matrices that are in the F-linear span of I, A, \cdots, A^{n-1}.

5. (Aug-06.5): Let \(A \in M_n(\mathbb{C}) \). Show that the following are equivalent:

(a) The ranks of \(A \) and \(A^2 \) are equal.
(b) The multiplicity of 0 as a root of the minimal polynomial of \(A \) is at most 1.
(c) There is an \(n \times n \) matrix \(X \) such that \(AXA = A, XAX = X, AX = XA \).

Solution: We can conjugate without changing anything, so assume without loss of generality that \(A \) is in Jordan form. We show that all three conditions are equivalent to the statement: all Jordan blocks with eigenvalue 0 have size 1.

a) The Jordan blocks of eigenvalue not 0 all have full rank in both \(A \) and \(A^2 \) so we need only consider the Jordan blocks with eigenvalue 0. In \(A \) the rank of each such \(k \times k \) block is \(k - 1 \), while in \(A^2 \) the rank is 0. Hence all Jordan blocks with eigenvalue 0 have size 1 if the rank of \(A \) equals the rank of \(A^2 \).

b) By basic properties, \(x^2 \) divides the minimal polynomial iff there is a Jordan block of size at least 2 with eigenvalue 0.

c) If the Jordan blocks with eigenvalue 0 have size at most 1, say \(A = \begin{pmatrix} 0 & 0 \\ 0 & B \end{pmatrix} \) where \(B \) is invertible (since it has all the nonzero eigenvalues of \(A \) in it); then take \(X = \begin{pmatrix} 0 & 0 \\ 0 & B^{-1} \end{pmatrix} \). Conversely, if such an \(X \) exists, then \(AXA^2 = A \) so \(\text{rank}(A) \leq \text{rank}(A^2) \leq \text{rank}(A) \), so we recover condition (a).

6. (Aug-06.5): Let \(F = \mathbb{F}_q \) and \(M_2(F) \) be the ring of \(2 \times 2 \) matrices over \(F \).

(a) If \(A \in M_2(F) \) has equal eigenvalues in the algebraic closure of \(F \), show that the eigenvalues of \(A \) belong to \(F \).

(b) Determine the number of nonzero nilpotent matrices in \(M_2(F) \) as a function of \(q \).

Solution:

a) Let the eigenvalues be \(\lambda, \lambda \). We know that \(\text{Tr}(A) = 2\lambda \) and \(\det(A) = \lambda^2 \), and both of these are in \(F \) (since they are polynomials in the entries of \(A \)). If \(\text{char}(F) \neq 2 \), then \(\lambda = \frac{2\lambda}{2} \in F \). If \(\text{char}(F) = 2 \) then since \(F^\times \) is an abelian group of odd order, squaring is an automorphism of \(F^\times \) so every element of \(F \) has a unique square root in \(F \), so in particular \(\lambda = \sqrt{\det(A)} \in F \).

b) A matrix is nilpotent (over any field) iff all its eigenvalues are zero (as either of these is equivalent to its characteristic polynomial being \(x^n \)). For a nonzero \(2 \times 2 \) matrix the only possibility for its Jordan form is \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \). (Alternatively, we could use part (a).) We then want to find the size of the orbit under the conjugation action of \(GL_2(F) \). Since \(|GL_2(F)| = (q^2 - 1)(q^2 - q) \) by the standard vector space argument, by applying the orbit-stabilizer lemma it’s enough to find the invertible matrices which stabilize \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) under conjugation. One can do this just by multiplying out \(\begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} \) and equating coefficients to see that the matrices which commute with \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) are precisely those of the form \(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \), of which there are \(q(q - 1) \) invertible ones (since the determinant is \(a^2 \)). Whence: there are \(q^3 - 1 \) conjugates of this matrix.

b-alt) By the argument given in the Remark to Jan-14.2, since the minimal polynomial of \(M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) has degree 2, the only matrices which commute with it are of the form \(aI + bM \).
7. (Jan-10.4): Let V be finite-dimensional over F and $T : V \to V$, with characteristic polynomial $f(x) \in F[x]$.

(a) Show that $f(x)$ is irreducible in $F[x]$ iff there are no proper nonzero subspaces W of V with $T(W) \subseteq W$.

(b) If $f(x)$ is irreducible and $\text{char}(F) = 0$, show that T is diagonalizable over the algebraic closure \bar{F}.

Solution:

a) If $f(x)$ is reducible with a factor $g(x)$, then $\ker(g(T))$ is a nontrivial proper subspace which is mapped into itself by T. For the other direction, let W be any subspace of V with $T(W) \subseteq W$, and choose a basis to make T block-upper-triangular, say $T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ where A corresponds to $T|_W$ and C corresponds to $T|_{V/W}$.

Then the characteristic polynomial $p_V(x)$ of T is $\det(xI - T) = \begin{vmatrix} xI - A & -B \\ 0 & xI - C \end{vmatrix} = \det(xI - A) \cdot \det(xI - C)$, which is the product of the characteristic polynomials $p_W(x)$ of T_W and $p_{V/W}(x)$ of $T_{V/W}$. We then see that the characteristic polynomial $T|_W$ divides the characteristic polynomial of T.

b) Observe that f has no repeated roots, since otherwise $\text{gcd}(f, f')$ would have positive degree and divide f. But then the Jordan form must have all Jordan blocks of size 1, so T is diagonalizable over \bar{F}.

8. (Jan-05.4): Let F be an algebraically-closed field and $M_n(F)$ be the ring of $n \times n$ matrices over F. Describe those matrices $X \in M_n(F)$ such that all matrices that commute with X are diagonalizable.

Solution: The answer is: matrices with distinct eigenvalues in F. To see this, first observe that X itself must be diagonalizable since it commutes with itself. Conjugating does not affect the given property, so further assume that X is in Jordan form; hence, diagonal. If X has any equal eigenvalues, then X does not have the given property, since after changing basis to put two equal eigenvalues λ in the upper left of the diagonal, X commutes with a Jordan block matrix of the form $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$. Now if X is diagonal with distinct eigenvalues, we claim that the set of matrices that commute with X are the diagonal matrices. To see this, observe that if A is any matrix and X is the diagonal matrix whose (i, i) entry is λ_i, then the (i, j) component of $AX -XA$ is $a_{i,j}(\lambda_i - \lambda_j)$, which must be zero. Since the eigenvalues are distinct, we see that all off-diagonal entries of A must be zero, so A is diagonal. Hence, we are done.

Remark In fact the result holds over any field, algebraically closed or not. An appropriate usage of the rational canonical form in the above argument will provide a construction of an appropriate non-diagonalizable matrix that commutes with X.