Complete all 6 problems. Each problem is weighted equally.

1. Consider \(u''(x) = f(x) \) on the interval \([0, 1]\) with periodic boundary conditions.

 (a) Derive a 4th-order-accurate finite difference method for this boundary value problem. Show that the local truncation error is \(O(h^4) \) where \(h = \Delta x \) is the mesh width.

 (b) Prove that your method is convergent: (i) Define an appropriate notion of stability, and prove that your method is stable. (ii) Use your consistency and stability results to prove convergence.

2. (a) Consider the ODE system \(du/dt = Au + Bu \) where \(u \in \mathbb{R}^d \), \(A \in \mathbb{R}^{d \times d} \), \(B \in \mathbb{R}^{d \times d} \), \(u(0) = u_0 \), where \(A \) and \(B \) are constant matrices. Show that the following Strang splitting strategy is 2nd-order-accurate: update \(U^n \approx u(n\Delta t) \) to \(U^{n+1} \approx u((n+1)\Delta t) \) using the three-stage procedure

\[
U^* = e^{Ah/2}U^n, \quad U^{**} = e^{Bh}U^*, \quad U^{n+1} = e^{Ah/2}U^{**},
\]

where \(k = \Delta t \).

 (b) Under what conditions on \(A \) and \(B \) is Strang splitting exact? I.e., if \(U^n = u(n\Delta t) \), under what conditions does the strategy from part (a) provide exact equality \(U^{n+1} = u((n+1)\Delta t) \)?

 (c) Consider an extension of the ODE system to the form \(du/dt = Au + Bu + Cu \) where \(C \in \mathbb{R}^{d \times d} \) is also a constant matrix. Derive a 2nd-order-accurate splitting method, where each stage of your method uses at most one of the matrices \(A, B, C \). How many stages does your method use?

3. Consider the advection equation \(u_t + au_x = 0 \) with \(a > 0 \).

 (a) Use a Taylor series expansion of \(u(x,t+k) \) to derive a 2nd-order-accurate finite difference method for the advection equation, with centered spatial derivatives, with time step \(k = \Delta t \) and mesh width \(h = \Delta x \).

 (b) Derive one-sided, 2nd-order-accurate finite difference approximations for \(\partial u/\partial x \) and \(\partial^2 u/\partial x^2 \). (A one-sided approximation of \(\partial u/\partial x \) at grid point \(x_j \) uses the values of \(u \) only at grid points \(x_{j'} \) with \(j' \leq j \).)

 (c) Use a Taylor series expansion of \(u(x,t+k) \) to derive a 2nd-order-accurate finite difference method for the advection equation, with one-sided spatial derivatives.
(d) Use von Neumann stability analysis to derive the stability constraint for the one-sided method from part (c).

4. Prove the following.

(a) If $B \in \mathbb{C}^{n \times n}$, $B = [b_{ij}]$ is strictly diagonally dominant,

$$|b_{ii}| > \sum_{j=1, j \neq i}^{n} |b_{ij}| \quad i = 1, 2, ..., n$$

then B is non-singular.

(b) If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then Jacobi iterations to solve $Ax = b$ will converge for any $b \in \mathbb{R}^n$ and any initial guess.

(c) If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then Gauss-Seidel iterations to solve $Ax = b$ will converge for any $b \in \mathbb{R}^n$ and any initial guess.

5. Consider the Rayleigh quotient, $r(x) = (x, Ax)/(x, x)$.

(a) Show that for a Hermitian matrix $A \in \mathbb{C}^{N \times N}$ that the Rayleigh quotient gives an eigenvalue estimate whose accuracy is quadratic in the distance between x and the associated eigenvector.

(b) The power method is a slow method for finding the eigenvector corresponding to the largest eigenvalue λ of A. Starting with $v^{(0)}$ as an initial estimate with $\|v^{(0)}\| = 1$, iteration proceeds as $v^{(k)} = Ap^{(k-1)}/\|p^{(k-1)}\|$, and the k^{th} estimate of the eigenvalue is $\lambda^{(k)} = r(v^{(k)})$. Prove, for A Hermitian and for all $v^{(0)}$ outside a set of measure zero, that

$$\|v^{(k)} - (\pm q_1)\| = O\left(\frac{\lambda_2}{\lambda_1}\right)^{k}, \quad \|\lambda^{(k)} - \lambda_1\| = O\left(\frac{\lambda_2}{\lambda_1}\right)^{2k},$$

where (λ_1, q_1) are the largest eigenvalue of A and its associated eigenvector, and λ_2 is the second largest eigenvalue of A.

(c) Why must a method for determining the eigenvalues of a matrix $A \in \mathbb{C}^{N \times N}$, for $N \geq 5$, generally be iterative instead of direct?

6. Let $A \in \mathbb{R}^{N \times N}$ be symmetric positive definite. At each step of a GMRES iteration to solve $Ax = b$ for $b \in \mathbb{R}^N$, the L_2 norm of the residual $r_n = b - Ax_n$ is minimized, with $x_n \in \mathcal{K}_n = \text{span}\{b, Ab, A^2b, ..., A^{n-1}b\}$.

(a) Show that GMRES iteration can be interpreted as the selection of a polynomial $p_n \in P_n$, where $P_n = \{\text{polynomials of degree } \leq n, p(0) = 1\}$, such that $\|p_n(A)b\|$ is minimal, and hence that

$$\frac{\|r_n\|}{\|b\|} \leq \inf_{p_n \in P_n} \|p_n(A)\|.$$ \hspace{1cm} (4)

(b) From (4) we see that the performance of GMRES is controlled by $\inf_{p_n \in P_n} \|p_n(A)\|$. Show that

$$\|p_n(A)\| \leq \kappa(V) \max_i \|p_n(\lambda_i)\|_{\lambda_i \in \Lambda},$$

where $A = V\Lambda V^{-1}$ and $\kappa(V) = \|V\|\|V^{-1}\|$ is the condition number of the matrix V.

(c) Consider a symmetric positive definite matrix $A \in \mathbb{R}^{N \times N}$ with $N > 1$ such that $a_{ii} = 3$ and $|a_{ij}| < 2/(N - 1)$. Approximate the convergence rate of GMRES iteration for such a matrix.